Bayesian Estimation of Principal Components for Functional Data

The area of principal components analysis (PCA) has seen relatively few contributions from the Bayesian school of inference. In this paper, we propose a Bayesian method for PCA in the case of functional data observed with error. We suggest modeling the covariance function by use of an approximate spectral decomposition, leading to easily interpretable parameters. We study in depth the choice of using the implied distributions arising from the inverse Wishart prior and prove a convergence theorem for the case of an exact nite dimensional rep- resentation. We also discuss computational issues as well as the care needed in choosing hyperparameters. A simulation study is used to demonstrate competitive performance against a recent frequentist procedure, particularly in terms of the principal component estimation. Finally, we apply the method to a real dataset, where we also incorporate model selection on the dimension of the

[1]  Angelika van der Linde,et al.  Variational Bayesian functional PCA , 2008, Comput. Stat. Data Anal..

[2]  P. Green Reversible jump Markov chain Monte Carlo computation and Bayesian model determination , 1995 .

[3]  S. Katti Operational Subjective Statistical Methods , 1998 .

[4]  D. Pollard Empirical Processes: Theory and Applications , 1990 .

[5]  R. Muirhead Aspects of Multivariate Statistical Theory , 1982, Wiley Series in Probability and Statistics.

[6]  A. V. D. Vaart,et al.  Convergence rates of posterior distributions , 2000 .

[7]  L. Goddard Information Theory , 1962, Nature.

[8]  S. Ghosal,et al.  Adaptive Bayesian multivariate density estimation with Dirichlet mixtures , 2011, 1109.6406.

[9]  Aad van der Vaart,et al.  Fundamentals of Nonparametric Bayesian Inference , 2017 .

[10]  Piotr Kokoszka,et al.  Inference for Functional Data with Applications , 2012 .

[11]  Michael E. Tipping,et al.  Probabilistic Principal Component Analysis , 1999 .

[12]  Luo Xiao,et al.  Fast covariance estimation for high-dimensional functional data , 2013, Stat. Comput..

[13]  S. Chib Marginal Likelihood from the Gibbs Output , 1995 .

[14]  S. Lang,et al.  Bayesian P-Splines , 2004 .

[15]  Heng Tao Shen,et al.  Principal Component Analysis , 2009, Encyclopedia of Biometrics.

[16]  Subhashis Ghosal,et al.  Bayesian structure learning in graphical models , 2013, J. Multivar. Anal..

[17]  A. U.S.,et al.  Hierarchical Models for Assessing Variability among Functions , 2005 .

[18]  Jean-Paul Chilès,et al.  Wiley Series in Probability and Statistics , 2012 .

[19]  F. Lad Operational Subjective Statistical Methods: A Mathematical, Philosophical, and Historical Introduction , 1996 .

[20]  Hans-Georg Müller,et al.  Functional Data Analysis , 2016 .

[21]  K. Taira Proof of Theorem 1.3 , 2004 .

[22]  G. Ragsdell Systems , 2002, Economics of Visual Art.

[23]  Christopher M. Bishop,et al.  Bayesian PCA , 1998, NIPS.