Fixed-Length Poisson MRF: Adding Dependencies to the Multinomial
暂无分享,去创建一个
[1] P. Altham,et al. Two Generalizations of the Binomial Distribution , 1978 .
[2] Thomas Hofmann,et al. Probabilistic Latent Semantic Analysis , 1999, UAI.
[3] Radford M. Neal. Annealed importance sampling , 1998, Stat. Comput..
[4] Michael I. Jordan,et al. Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..
[5] Thomas L. Griffiths,et al. Probabilistic Topic Models , 2007 .
[6] William W. Cohen,et al. Sparse Word Graphs: A Scalable Algorithm for Capturing Word Correlations in Topic Models , 2007, Seventh IEEE International Conference on Data Mining Workshops (ICDMW 2007).
[7] Chong Wang,et al. Reading Tea Leaves: How Humans Interpret Topic Models , 2009, NIPS.
[8] David M. Blei,et al. Probabilistic topic models , 2012, Commun. ACM.
[9] Timothy Baldwin,et al. Evaluating topic models for digital libraries , 2010, JCDL '10.
[10] David M. Blei,et al. Bayesian Checking for Topic Models , 2011, EMNLP.
[11] Andrew McCallum,et al. Optimizing Semantic Coherence in Topic Models , 2011, EMNLP.
[12] Pradeep Ravikumar,et al. Graphical Models via Generalized Linear Models , 2012, NIPS.
[13] Pradeep Ravikumar,et al. On Poisson Graphical Models , 2013, NIPS.
[14] Mark Stevenson,et al. Evaluating Topic Coherence Using Distributional Semantics , 2013, IWCS.
[15] Pradeep Ravikumar,et al. Capturing Semantically Meaningful Word Dependencies with an Admixture of Poisson MRFs , 2014, NIPS.
[16] Pradeep Ravikumar,et al. Admixture of Poisson MRFs: A Topic Model with Word Dependencies , 2014, ICML.