Gaussian processes with built-in dimensionality reduction: Applications in high-dimensional uncertainty propagation

Uncertainty quantification (UQ) tasks, such as model calibration, uncertainty propagation, and optimization under uncertainty, typically require several thousand evaluations of the underlying computer codes. To cope with the cost of simulations, one replaces the real response surface with a cheap surrogate based, e.g., on polynomial chaos expansions, neural networks, support vector machines, or Gaussian processes (GP). However, the number of simulations required to learn a generic multivariate response grows exponentially as the input dimension increases. This curse of dimensionality can only be addressed, if the response exhibits some special structure that can be discovered and exploited. A wide range of physical responses exhibit a special structure known as an active subspace (AS). An AS is a linear manifold of the stochastic space characterized by maximal response variation. The idea is that one should first identify this low dimensional manifold, project the high-dimensional input onto it, and then link the projection to the output. If the dimensionality of the AS is low enough, then learning the link function is a much easier problem than the original problem of learning a high-dimensional function. The classic approach to discovering the AS requires gradient information, a fact that severely limits its applicability. Furthermore, and partly because of its reliance to gradients, it is not able to handle noisy observations. The latter is an essential trait if one wants to be able to propagate uncertainty through stochastic simulators, e.g., through molecular dynamics codes. In this work, we develop a probabilistic version of AS which is gradient-free and robust to observational noise. Our approach relies on a novel Gaussian process regression with built-in dimensionality reduction. In particular, the AS is represented as an orthogonal projection matrix that serves as yet another covariance function hyper-parameter to be estimated from the data. To train the model, we design a two-step maximum likelihood optimization procedure that ensures the orthogonality of the projection matrix by exploiting recent results on the Stiefel manifold, i.e., the manifold of matrices with orthogonal columns. The additional benefit of our probabilistic formulation, is that it allows us to select the dimensionality of the AS via the Bayesian information criterion. We validate our approach by showing that it can discover the right AS in synthetic examples without gradient information using both noiseless and noisy observations. We demonstrate that our method is able to discover the same AS as the classical approach in a challenging one-hundred-dimensional problem involving an elliptic stochastic partial differential equation with random conductivity. Finally, we use our approach to study the effect of geometric and material uncertainties in the propagation of solitary waves in a one dimensional granular system.

[1]  Mason A. Porter,et al.  Granular crystals: Nonlinear dynamics meets materials engineering , 2015 .

[2]  J. Yang,et al.  Attenuation of Solitary Waves and Localization of Breathers in 1D Granular Crystals Visualized via High Speed Photography , 2014 .

[3]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[4]  Radford M. Neal Assessing Relevance determination methods using DELVE , 1998 .

[5]  Frances Y. Kuo,et al.  Multi-level quasi-Monte Carlo finite element methods for a class of elliptic partial differential equations with random coefficients , 2012, 1208.6349.

[6]  Fabio Nobile,et al.  A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007, SIAM Rev..

[7]  Andreas Griewank,et al.  Evaluating derivatives - principles and techniques of algorithmic differentiation, Second Edition , 2000, Frontiers in applied mathematics.

[8]  Alan E. Gelfand,et al.  Bayesian nonparametric modeling for functional analysis of variance , 2014 .

[9]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[10]  Xiang Ma,et al.  An adaptive high-dimensional stochastic model representation technique for the solution of stochastic partial differential equations , 2010, J. Comput. Phys..

[11]  Christian P. Robert,et al.  Monte Carlo Statistical Methods (Springer Texts in Statistics) , 2005 .

[12]  Qiqi Wang,et al.  Output Based Dimensionality Reduction of Geometric Variability in Compressor Blades , 2013 .

[13]  Alison L. Marsden,et al.  A stochastic collocation method for uncertainty quantification and propagation in cardiovascular simulations. , 2011, Journal of biomechanical engineering.

[14]  Dongbin Xiu,et al.  High-Order Collocation Methods for Differential Equations with Random Inputs , 2005, SIAM J. Sci. Comput..

[15]  Sonja Kuhnt,et al.  Design and analysis of computer experiments , 2010 .

[16]  Paul W. Goldberg,et al.  Regression with Input-dependent Noise: A Gaussian Process Treatment , 1997, NIPS.

[17]  Radford M. Neal Probabilistic Inference Using Markov Chain Monte Carlo Methods , 2011 .

[18]  Herschel Rabitz,et al.  Efficient Implementation of High Dimensional Model Representations , 2001 .

[19]  C. Currin,et al.  A Bayesian Approach to the Design and Analysis of Computer Experiments , 1988 .

[20]  Gianluca Iaccarino,et al.  A Surrogate Accelerated Bayesian Inverse Analysis of the HyShot II Flight Data , 2011 .

[21]  T. Plate ACCURACY VERSUS INTERPRETABILITY IN FLEXIBLE MODELING : IMPLEMENTING A TRADEOFF USING GAUSSIAN PROCESS MODELS , 1999 .

[22]  A. O'Hagan,et al.  Bayesian inference for the uncertainty distribution of computer model outputs , 2002 .

[23]  A. Meher Prasad,et al.  High‐dimensional model representation for structural reliability analysis , 2009 .

[24]  Gianluca Iaccarino,et al.  Quantification of margins and uncertainties using an active subspace method for approximating bounds , 2014 .

[25]  H. Rabitz,et al.  General foundations of high‐dimensional model representations , 1999 .

[26]  F. D'auria,et al.  Outline of the uncertainty methodology based on accuracy extrapolation , 1995 .

[27]  H. Rabitz,et al.  High Dimensional Model Representations , 2001 .

[28]  Dongbin Xiu,et al.  The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..

[29]  Ralph C. Smith,et al.  Uncertainty Quantification: Theory, Implementation, and Applications , 2013 .

[30]  Anthony O'Hagan,et al.  Monte Carlo is fundamentally unsound , 1987 .

[31]  Surajit Sen,et al.  Solitary waves in the granular chain , 2008 .

[32]  Ilias Bilionis,et al.  Multi-output local Gaussian process regression: Applications to uncertainty quantification , 2012, J. Comput. Phys..

[33]  Ilias Bilionis,et al.  Bayesian Uncertainty Propagation Using Gaussian Processes , 2015 .

[34]  Yvonne Freeh,et al.  Dynamics Of Heterogeneous Materials , 2016 .

[35]  B. Kowalski,et al.  Partial least-squares regression: a tutorial , 1986 .

[36]  Ilias Bilionis,et al.  Free energy computations by minimization of Kullback-Leibler divergence: An efficient adaptive biasing potential method for sparse representations , 2010, J. Comput. Phys..

[37]  Mason A Porter,et al.  Dissipative solitary waves in granular crystals. , 2008, Physical review letters.

[38]  Ilias Bilionis,et al.  Multi-output separable Gaussian process: Towards an efficient, fully Bayesian paradigm for uncertainty quantification , 2013, J. Comput. Phys..

[39]  Nicolas Le Roux,et al.  The Curse of Highly Variable Functions for Local Kernel Machines , 2005, NIPS.

[40]  Christopher M. Bishop,et al.  Pattern Recognition and Machine Learning (Information Science and Statistics) , 2006 .

[41]  Juan J. Alonso,et al.  Active Subspaces for Shape Optimization , 2014 .

[42]  Xiang Ma,et al.  An adaptive hierarchical sparse grid collocation algorithm for the solution of stochastic differential equations , 2009, J. Comput. Phys..

[43]  Julia Charrier,et al.  Strong and Weak Error Estimates for Elliptic Partial Differential Equations with Random Coefficients , 2012, SIAM J. Numer. Anal..

[44]  Paul G. Constantine A quick-and-dirty check for a one-dimensional active subspace , 2014 .

[45]  Radford M. Neal Pattern Recognition and Machine Learning , 2007, Technometrics.

[46]  Jorge Nocedal,et al.  A Limited Memory Algorithm for Bound Constrained Optimization , 1995, SIAM J. Sci. Comput..

[47]  P. Green Reversible jump Markov chain Monte Carlo computation and Bayesian model determination , 1995 .

[48]  Mike Tobyn,et al.  Multivariate analysis in the pharmaceutical industry: enabling process understanding and improvement in the PAT and QbD era , 2015, Pharmaceutical development and technology.

[49]  Michael Ortiz,et al.  Mesoscopic approach to granular crystal dynamics. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[50]  V F Nesterenko,et al.  Shock wave structure in a strongly nonlinear lattice with viscous dissipation. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[51]  Mihai Anitescu,et al.  Gradient-Enhanced Universal Kriging for Uncertainty Propagation , 2012 .

[52]  Raj Kumar Pal,et al.  Wave propagation in elasto-plastic granular systems , 2013 .

[53]  Donald R. Jones,et al.  Efficient Global Optimization of Expensive Black-Box Functions , 1998, J. Glob. Optim..

[54]  Hans-Martin Gutmann,et al.  A Radial Basis Function Method for Global Optimization , 2001, J. Glob. Optim..

[55]  Marcial Gonzalez,et al.  A nonlocal contact formulation for confined granular systems , 2011, 1107.4607.

[56]  Saltelli Andrea,et al.  Global Sensitivity Analysis: The Primer , 2008 .

[57]  Trent Michael Russi,et al.  Uncertainty Quantification with Experimental Data and Complex System Models , 2010 .

[58]  Geoffrey E. Hinton,et al.  Bayesian Learning for Neural Networks , 1995 .

[59]  R. Caflisch,et al.  Quasi-Monte Carlo integration , 1995 .

[60]  Ilias Bilionis,et al.  A stochastic optimization approach to coarse-graining using a relative-entropy framework. , 2013, The Journal of chemical physics.

[61]  M. Girolami,et al.  Riemann manifold Langevin and Hamiltonian Monte Carlo methods , 2011, Journal of the Royal Statistical Society: Series B (Statistical Methodology).

[62]  Radford M. Neal Annealed importance sampling , 1998, Stat. Comput..

[63]  Paul G. Constantine,et al.  Conditional sampling and experiment design for quantifying manufacturing error of transonic airfoil , 2011 .

[64]  Albert Tarantola,et al.  Inverse problem theory - and methods for model parameter estimation , 2004 .

[65]  Xiang Ma,et al.  Kernel principal component analysis for stochastic input model generation , 2010, J. Comput. Phys..

[66]  Ilias Bilionis,et al.  Multidimensional Adaptive Relevance Vector Machines for Uncertainty Quantification , 2012, SIAM J. Sci. Comput..

[67]  Heikki Haario,et al.  DRAM: Efficient adaptive MCMC , 2006, Stat. Comput..

[68]  Elad Gilboa,et al.  Scaling Multidimensional Inference for Structured Gaussian Processes , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[69]  Prasanna Balaprakash,et al.  Active-learning-based surrogate models for empirical performance tuning , 2013, 2013 IEEE International Conference on Cluster Computing (CLUSTER).

[70]  Fernando Fraternali,et al.  Directional Wave Propagation in a Highly Nonlinear Square Packing of Spheres , 2013 .

[71]  D. Ginsbourger,et al.  Additive Covariance Kernels for High-Dimensional Gaussian Process Modeling , 2011, 1111.6233.

[72]  Zhiwen Zhang,et al.  A Data-Driven Stochastic Method for Elliptic PDEs with Random Coefficients , 2013, SIAM/ASA J. Uncertain. Quantification.

[73]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[74]  Andrea Barth,et al.  Multi-level Monte Carlo Finite Element method for elliptic PDEs with stochastic coefficients , 2011, Numerische Mathematik.

[75]  Nicola Beume,et al.  An EMO Algorithm Using the Hypervolume Measure as Selection Criterion , 2005, EMO.

[76]  C. Daraio,et al.  Strongly nonlinear waves in a chain of Teflon beads. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[77]  Kevin P. Murphy,et al.  Machine learning - a probabilistic perspective , 2012, Adaptive computation and machine learning series.

[78]  R. Muirhead Aspects of Multivariate Statistical Theory , 1982, Wiley Series in Probability and Statistics.

[79]  Wotao Yin,et al.  A feasible method for optimization with orthogonality constraints , 2013, Math. Program..

[80]  Christine A. Shoemaker,et al.  Constrained Global Optimization of Expensive Black Box Functions Using Radial Basis Functions , 2005, J. Glob. Optim..

[81]  Tim Hesterberg,et al.  Monte Carlo Strategies in Scientific Computing , 2002, Technometrics.

[82]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[83]  Paul G. Constantine,et al.  Discovering an active subspace in a single‐diode solar cell model , 2014, Stat. Anal. Data Min..

[84]  A. O'Hagan,et al.  Probabilistic sensitivity analysis of complex models: a Bayesian approach , 2004 .

[85]  James O. Berger,et al.  Uncertainty analysis and other inference tools for complex computer codes , 1998 .

[86]  Fabio Nobile,et al.  A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2010, SIAM Rev..

[87]  Hoon Kim,et al.  Monte Carlo Statistical Methods , 2000, Technometrics.

[88]  Wolfram Burgard,et al.  Nonstationary Gaussian Process Regression Using Point Estimates of Local Smoothness , 2008, ECML/PKDD.

[89]  H. Rabitz,et al.  High Dimensional Model Representations Generated from Low Dimensional Data Samples. I. mp-Cut-HDMR , 2001 .

[90]  Xiaoping Du,et al.  Efficient Uncertainty Analysis Methods for Multidisciplinary Robust Design , 2002 .

[91]  N. Zabaras,et al.  Solution of inverse problems with limited forward solver evaluations: a Bayesian perspective , 2013 .

[92]  D. Gleich,et al.  Computing active subspaces with Monte Carlo , 2014, 1408.0545.

[93]  R. Plessix A review of the adjoint-state method for computing the gradient of a functional with geophysical applications , 2006 .

[94]  Qiqi Wang,et al.  Erratum: Active Subspace Methods in Theory and Practice: Applications to Kriging Surfaces , 2013, SIAM J. Sci. Comput..

[95]  David J. C. MacKay,et al.  Bayesian Interpolation , 1992, Neural Computation.

[96]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[97]  Peng Chen,et al.  Uncertainty propagation using infinite mixture of Gaussian processes and variational Bayesian inference , 2015, J. Comput. Phys..

[98]  Donald R. Jones,et al.  A Taxonomy of Global Optimization Methods Based on Response Surfaces , 2001, J. Glob. Optim..

[99]  Carl E. Rasmussen,et al.  Additive Gaussian Processes , 2011, NIPS.

[100]  Guang Lin,et al.  An adaptive ANOVA-based data-driven stochastic method for elliptic PDEs with random coefficient , 2014 .

[101]  M. Tribus,et al.  Probability theory: the logic of science , 2003 .

[102]  Yalchin Efendiev,et al.  ANALYSIS OF VARIANCE-BASED MIXED MULTISCALE FINITE ELEMENT METHOD AND APPLICATIONS IN STOCHASTIC TWO-PHASE FLOWS , 2014 .

[103]  E. Constantinescu,et al.  Crop physiology calibration in the CLM , 2015 .

[104]  Jon C. Helton,et al.  Challenge Problems : Uncertainty in System Response Given Uncertain Parameters ( DRAFT : November 29 , 2001 ) , 2001 .

[105]  A. O'Hagan,et al.  Bayes–Hermite quadrature , 1991 .

[106]  Paul G. Constantine,et al.  Active subspaces for sensitivity analysis and dimension reduction of an integrated hydrologic model , 2015, Comput. Geosci..

[107]  S. Sain,et al.  Bayesian functional ANOVA modeling using Gaussian process prior distributions , 2010 .

[108]  R Bellman,et al.  DYNAMIC PROGRAMMING AND LAGRANGE MULTIPLIERS. , 1956, Proceedings of the National Academy of Sciences of the United States of America.

[109]  T. J. Mitchell,et al.  Bayesian Prediction of Deterministic Functions, with Applications to the Design and Analysis of Computer Experiments , 1991 .

[110]  Thomas J. Santner,et al.  The Design and Analysis of Computer Experiments , 2003, Springer Series in Statistics.

[111]  D. Xiu Efficient collocational approach for parametric uncertainty analysis , 2007 .

[112]  S. Wold,et al.  PLS-regression: a basic tool of chemometrics , 2001 .

[113]  James C. Spall,et al.  Introduction to stochastic search and optimization - estimation, simulation, and control , 2003, Wiley-Interscience series in discrete mathematics and optimization.

[114]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[115]  Manabu Kano,et al.  Estimation of active pharmaceutical ingredients content using locally weighted partial least squares and statistical wavelength selection. , 2011, International journal of pharmaceutics.

[116]  David E. Booth,et al.  Chemometrics: Data Analysis for the Laboratory and Chemical Plant , 2004, Technometrics.

[117]  Karl Pearson F.R.S. LIII. On lines and planes of closest fit to systems of points in space , 1901 .