Steady State Solutions of a Reaction‐Diffusion System Modeling Chemotaxis

We study the following nonlinear elliptic equation where Ω is a smooth bounded domain in ℝ2. This equation arises in the study of stationary solutions of a chemotaxis system proposed by Keller and Segel. Under the condition that for m =1,2,…, where λ1 is the first (nonzero) eigenvalue of —Δ under the Neumann boundary condition, we establish the existence of a solution to the above equation. Our idea is a combination of Struwe's technique and blow up analysis for a problem with Neumann boundary condition.

[1]  J. Jost,et al.  Existence results for mean field equations , 1997, dg-ga/9710023.

[2]  Wei Ding,et al.  Scalar curvatures on $S\sp 2$ , 1987 .

[3]  H. Gajewski,et al.  Global Behaviour of a Reaction‐Diffusion System Modelling Chemotaxis , 1998 .

[4]  S. Chang,et al.  Prescribing Gaussian curvature on S2 , 1987 .

[5]  L. Caffarelli,et al.  Vortex condensation in the Chern-Simons Higgs model: An existence theorem , 1995 .

[6]  Kung-Ching Chang,et al.  ON NIRENBERG'S PROBLEM , 1993 .

[7]  Paul Yang,et al.  Conformal deformation of metrics on $S^2$ , 1988 .

[8]  Dirk Horstmann,et al.  Blow-up in a chemotaxis model without symmetry assumptions , 2001, European Journal of Applied Mathematics.

[9]  J. Jost,et al.  Self Duality Equations for Ginzburg–Landau¶and Seiberg–Witten Type Functionals¶with 6th Order Potentials , 2001 .

[10]  Juncheng Wei,et al.  Asymptotic behavior of a nonlinear fourth order eigenvalue problem , 1996 .

[11]  Takashi Suzuki,et al.  Asymptotic analysis for two-dimensional elliptic eigenvalue problems with exponentially dominated nonlinearities , 1990 .

[12]  Haim Brezis,et al.  Uniform estimates and blow–up behavior for solutions of −δ(u)=v(x)eu in two dimensions , 1991 .

[13]  G. Tarantello Multiple condensate solutions for the Chern–Simons–Higgs theory , 1996 .

[14]  F. W. Warner,et al.  Curvature Functions for Compact 2-Manifolds , 1974 .

[15]  Takashi Suzuki Global analysis for a two-dimensional elliptic eigenvalue problem with the exponential nonlinearity , 1992 .

[16]  J. Jost,et al.  Multiplicity results for the two-vortex Chern-Simons Higgs model on the two-sphere , 1999 .

[17]  L. Segel,et al.  Initiation of slime mold aggregation viewed as an instability. , 1970, Journal of theoretical biology.

[18]  D. Ye Une remarque sur le comportement asymptotique des solutions de -Δu=λƒ(u) , 1997 .

[19]  M. A. Herrero,et al.  Singularity patterns in a chemotaxis model , 1996 .

[20]  M. A. Herrero,et al.  Chemotactic collapse for the Keller-Segel model , 1996, Journal of mathematical biology.

[21]  M. A. Herrero,et al.  A blow-up mechanism for a chemotaxis model , 1997 .

[22]  Emmanuel Hebey,et al.  Nonlinear analysis on manifolds , 1999 .

[23]  P. Lions,et al.  A special class of stationary flows for two-dimensional euler equations: A statistical mechanics description. Part II , 1995 .

[24]  W. Ni,et al.  On the shape of least‐energy solutions to a semilinear Neumann problem , 1991 .

[25]  Michael Struwe,et al.  On multivortex solutions in Chern-Simons gauge theory , 1998 .

[26]  M. Struwe The evolution of harmonic mappings with free boundaries , 1991 .

[27]  Yanyan Li,et al.  Continuity of solutions of uniformly elliptic equations in R2 , 1992 .

[28]  G. Tarantello,et al.  On a Sharp Sobolev‐Type Inequality on Two-Dimensional Compact Manifolds , 1998 .

[29]  W. Jäger,et al.  On explosions of solutions to a system of partial differential equations modelling chemotaxis , 1992 .

[30]  M. Struwe Multiple Solutions to the Dirichlet Problem for the Equation of Prescribed Mean Curvature , 1990 .

[31]  R. Schaaf Stationary solutions of chemotaxis systems , 1985 .

[32]  Emanuele Caglioti,et al.  A special class of stationary flows for two-dimensional Euler equations: A statistical mechanics description , 1992 .

[33]  R. Palais Critical point theory and the minimax principle , 1970 .

[34]  Clifford Henry Taubes,et al.  ArbitraryN-vortex solutions to the first order Ginzburg-Landau equations , 1980 .