Steady State Solutions of a Reaction‐Diffusion System Modeling Chemotaxis
暂无分享,去创建一个
[1] J. Jost,et al. Existence results for mean field equations , 1997, dg-ga/9710023.
[2] Wei Ding,et al. Scalar curvatures on $S\sp 2$ , 1987 .
[3] H. Gajewski,et al. Global Behaviour of a Reaction‐Diffusion System Modelling Chemotaxis , 1998 .
[4] S. Chang,et al. Prescribing Gaussian curvature on S2 , 1987 .
[5] L. Caffarelli,et al. Vortex condensation in the Chern-Simons Higgs model: An existence theorem , 1995 .
[6] Kung-Ching Chang,et al. ON NIRENBERG'S PROBLEM , 1993 .
[7] Paul Yang,et al. Conformal deformation of metrics on $S^2$ , 1988 .
[8] Dirk Horstmann,et al. Blow-up in a chemotaxis model without symmetry assumptions , 2001, European Journal of Applied Mathematics.
[9] J. Jost,et al. Self Duality Equations for Ginzburg–Landau¶and Seiberg–Witten Type Functionals¶with 6th Order Potentials , 2001 .
[10] Juncheng Wei,et al. Asymptotic behavior of a nonlinear fourth order eigenvalue problem , 1996 .
[11] Takashi Suzuki,et al. Asymptotic analysis for two-dimensional elliptic eigenvalue problems with exponentially dominated nonlinearities , 1990 .
[12] Haim Brezis,et al. Uniform estimates and blow–up behavior for solutions of −δ(u)=v(x)eu in two dimensions , 1991 .
[13] G. Tarantello. Multiple condensate solutions for the Chern–Simons–Higgs theory , 1996 .
[14] F. W. Warner,et al. Curvature Functions for Compact 2-Manifolds , 1974 .
[15] Takashi Suzuki. Global analysis for a two-dimensional elliptic eigenvalue problem with the exponential nonlinearity , 1992 .
[16] J. Jost,et al. Multiplicity results for the two-vortex Chern-Simons Higgs model on the two-sphere , 1999 .
[17] L. Segel,et al. Initiation of slime mold aggregation viewed as an instability. , 1970, Journal of theoretical biology.
[18] D. Ye. Une remarque sur le comportement asymptotique des solutions de -Δu=λƒ(u) , 1997 .
[19] M. A. Herrero,et al. Singularity patterns in a chemotaxis model , 1996 .
[20] M. A. Herrero,et al. Chemotactic collapse for the Keller-Segel model , 1996, Journal of mathematical biology.
[21] M. A. Herrero,et al. A blow-up mechanism for a chemotaxis model , 1997 .
[22] Emmanuel Hebey,et al. Nonlinear analysis on manifolds , 1999 .
[23] P. Lions,et al. A special class of stationary flows for two-dimensional euler equations: A statistical mechanics description. Part II , 1995 .
[24] W. Ni,et al. On the shape of least‐energy solutions to a semilinear Neumann problem , 1991 .
[25] Michael Struwe,et al. On multivortex solutions in Chern-Simons gauge theory , 1998 .
[26] M. Struwe. The evolution of harmonic mappings with free boundaries , 1991 .
[27] Yanyan Li,et al. Continuity of solutions of uniformly elliptic equations in R2 , 1992 .
[28] G. Tarantello,et al. On a Sharp Sobolev‐Type Inequality on Two-Dimensional Compact Manifolds , 1998 .
[29] W. Jäger,et al. On explosions of solutions to a system of partial differential equations modelling chemotaxis , 1992 .
[30] M. Struwe. Multiple Solutions to the Dirichlet Problem for the Equation of Prescribed Mean Curvature , 1990 .
[31] R. Schaaf. Stationary solutions of chemotaxis systems , 1985 .
[32] Emanuele Caglioti,et al. A special class of stationary flows for two-dimensional Euler equations: A statistical mechanics description , 1992 .
[33] R. Palais. Critical point theory and the minimax principle , 1970 .
[34] Clifford Henry Taubes,et al. ArbitraryN-vortex solutions to the first order Ginzburg-Landau equations , 1980 .