Adaptive synchronization of unidirectional and mutual coupled chaotic systems

Two theorems for adaptive synchronization of unidirectional and mutual coupled nonautonomous chaotic systems are derived individually. An adaptive coupling gain is realized by adopting an adaptive law to estimate the Lipschitz constant of the chaotic system. The Lorenz system and the Duffing system are simulated to illustrate theoretical results for unidirectional and mutual coupled chaotic systems, respectively.

[1]  Shihua Chen,et al.  Impulsive control and synchronization of unified chaotic system , 2004 .

[2]  Zhi Li,et al.  Robust adaptive synchronization of Rossler and Chen chaotic systems via slide technique , 2003 .

[3]  Shihua Chen,et al.  A stable-manifold-based method for chaos control and synchronization , 2004 .

[4]  V. Vorotnikov On stability and stabilization of motion with respect to a part of the variables , 1982 .

[5]  Guanrong Chen,et al.  A NEW CRITERION FOR SYNCHRONIZATION OF COUPLED CHAOTIC OSCILLATORS WITH APPLICATION TO CHUA'S CIRCUITS , 1999 .

[6]  S. Mascolo,et al.  Nonlinear observer design to synchronize hyperchaotic systems via a scalar signal , 1997 .

[7]  H. Yau Design of adaptive sliding mode controller for chaos synchronization with uncertainties , 2004 .

[8]  Yang Tao,et al.  Impulsive stabilization for control and synchronization of chaotic systems: theory and application to secure communication , 1997 .

[9]  Xinghuo Yu,et al.  Chaos Synchronization via Controlling Partial State of Chaotic Systems , 2001, Int. J. Bifurc. Chaos.

[10]  S. Ge,et al.  Adaptive synchronization of uncertain chaotic systems via backstepping design , 2001 .

[11]  Guanrong Chen,et al.  Adaptive Synchronization of Chaotic Systems via State or output Feedback Control , 2001, Int. J. Bifurc. Chaos.

[12]  Jinhu Lu,et al.  Adaptive synchronization of uncertain Rossler hyperchaotic system based on parameter identification , 2004 .

[13]  Ricardo Femat,et al.  Adaptive synchronization of high-order chaotic systems: a feedback with low-order parametrization , 2000 .

[14]  Jiye Zhang,et al.  Synchronizing chaotic systems using backstepping design , 2003 .

[15]  Moez Feki Synchronization of Chaotic Systems with Parametric Uncertainties Using Sliding Observers , 2004, Int. J. Bifurc. Chaos.

[16]  Morgül,et al.  Observer based synchronization of chaotic systems. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[17]  Henk Nijmeijer,et al.  An observer looks at synchronization , 1997 .

[18]  G. Grassi,et al.  Synchronizing hyperchaotic systems by observer design , 1999 .

[19]  N. Rouche,et al.  Stability Theory by Liapunov's Direct Method , 1977 .

[20]  Jinde Cao,et al.  Synchronization criteria of Lur’e systems with time-delay feedback control , 2005 .

[21]  Guanrong Chen,et al.  Switching manifold approach to chaos synchronization , 1999 .

[22]  Samuel Bowong,et al.  Synchronization of uncertain chaotic systems via backstepping approach , 2004 .

[23]  Kuang-Yow Lian,et al.  Adaptive synchronization design for chaotic systems via a scalar driving signal , 2002 .

[24]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[25]  Shuzhi Sam Ge,et al.  Synchronization of Two uncertain Chaotic Systems via Adaptive backstepping , 2001, Int. J. Bifurc. Chaos.

[26]  T. Liao,et al.  Chaotic synchronization via adaptive sliding mode observers subject to input nonlinearity , 2005 .

[27]  Yen-Sheng Chen,et al.  Synchronization of unidirectional coupled chaotic systems via partial stability , 2004 .

[28]  Tao Yang,et al.  Synchronizing chaotic dynamics with uncertainties based on a sliding mode control design. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[29]  M. Feki Observer-based exact synchronization of ideal and mismatched chaotic systems , 2003 .

[30]  Chun-Chieh Wang,et al.  A new adaptive variable structure control for chaotic synchronization and secure communication , 2004 .

[31]  Ying-Cheng Lai,et al.  Feedback Synchronization using pole-Placement Control , 2000, Int. J. Bifurc. Chaos.

[32]  Suochun Zhang,et al.  Adaptive backstepping synchronization of uncertain chaotic system , 2004 .