Efficient Shrinkage for Generalized Linear Mixed Models Under Linear Restrictions
暂无分享,去创建一个
[1] David G. Luenberger,et al. Linear and nonlinear programming , 1984 .
[2] Gerhard Tutz,et al. Variable selection for generalized linear mixed models by L1-penalized estimation , 2012, Statistics and Computing.
[3] Noah Simon,et al. A Sparse-Group Lasso , 2013 .
[4] S. Hossain,et al. Application of shrinkage estimation in linear regression models with autoregressive errors , 2015 .
[5] S. Ejaz Ahmed,et al. Shrinkage, pretest, and penalty estimators in generalized linear models , 2015 .
[6] J. Goeman. L1 Penalized Estimation in the Cox Proportional Hazards Model , 2009, Biometrical journal. Biometrische Zeitschrift.
[7] T. Louis. Finding the Observed Information Matrix When Using the EM Algorithm , 1982 .
[8] K. Doksum,et al. L 1 penalty and shrinkage estimation in partially linear models with random coefficient autoregressive errors , 2012 .
[9] J. Shao,et al. Regularizing lasso: A consistent variable selection method , 2015 .
[10] S. R. Searle,et al. Generalized, Linear, and Mixed Models , 2005 .
[11] Liangjun Su,et al. Shrinkage Estimation of Dynamic Panel Data Models with Interactive Fixed Effects , 2015 .
[12] Pranab Kumar Sen,et al. Risk comparison of some shrinkage M-estimators in linear models , 2006 .
[13] A. Sommer,et al. Increased risk of respiratory disease and diarrhea in children with preexisting mild vitamin A deficiency. , 1984, The American journal of clinical nutrition.
[14] P. McCullagh,et al. Generalized Linear Models , 1972, Predictive Analytics.
[15] Ryan J. Tibshirani,et al. Efficient Implementations of the Generalized Lasso Dual Path Algorithm , 2014, ArXiv.
[16] Jianqing Fan,et al. A Selective Overview of Variable Selection in High Dimensional Feature Space. , 2009, Statistica Sinica.
[17] Jürg Schelldorfer,et al. GLMMLasso: An Algorithm for High-Dimensional Generalized Linear Mixed Models Using ℓ1-Penalization , 2011, 1109.4003.
[18] S. Sinha,et al. Testing for generalized linear mixed models with cluster correlated data under linear inequality constraints , 2012 .
[19] R. Tibshirani. Regression Shrinkage and Selection via the Lasso , 1996 .
[20] S. Ahmed,et al. Shrinkage estimation and selection for a logistic regression model , 2014 .
[21] Kjell A. Doksum,et al. LASSO and shrinkage estimation in Weibull censored regression models , 2012 .
[22] H. Zou,et al. Sparse precision matrix estimation via lasso penalized D-trace loss , 2014 .
[23] M. Ghahramani,et al. Efficient estimation for time series following generalized linear models , 2016 .
[24] Mortaza Jamshidian,et al. On Algorithms for Restricted Maximum Likelihood Estimation , 2002, Comput. Stat. Data Anal..
[25] Ludwig Fahrmeir,et al. Bayesian smoothing and regression for longitudinal, spatial and event history data / Ludwig Fahrmeir , 2011 .
[26] P. Diggle,et al. Analysis of Longitudinal Data , 2003 .
[27] S. Nkurunziza,et al. A class of Stein‐rules in multivariate regression model with structural changes , 2016 .
[28] Heng Lian,et al. Shrinkage estimation for identification of linear components in additive models , 2012 .
[29] Chin-Tsang Chiang,et al. KERNEL SMOOTHING ON VARYING COEFFICIENT MODELS WITH LONGITUDINAL DEPENDENT VARIABLE , 2000 .