Molecular basis for the distinct functions of redox-active and FeS-transfering glutaredoxins

[1]  H. Gohlke,et al.  Quantitative assessment of the determinant structural differences between redox-active and inactive glutaredoxins , 2020, Nature Communications.

[2]  C. Lillig,et al.  Glutathione, Glutaredoxins, and Iron. , 2017 .

[3]  H. Hartung,et al.  Iron‐sulfur glutaredoxin 2 protects oligodendrocytes against damage induced by nitric oxide release from activated microglia , 2017, Glia.

[4]  Marcel Deponte,et al.  Glutaredoxin catalysis requires two distinct glutathione interaction sites , 2017, Nature Communications.

[5]  Yongwei Wang,et al.  Functional Analysis of GLRX5 Mutants Reveals Distinct Functionalities of GLRX5 Protein , 2016, Journal of cellular biochemistry.

[6]  N. Rouhier,et al.  The mitochondrial monothiol glutaredoxin S15 is essential for iron-sulfur protein maturation in Arabidopsis thaliana , 2015, Proceedings of the National Academy of Sciences.

[7]  C. Lillig,et al.  The specificity of thioredoxins and glutaredoxins is determined by electrostatic and geometric complementarity , 2015, Chemical science.

[8]  Marcel Deponte,et al.  Enzymatic control of cysteinyl thiol switches in proteins , 2015, Biological chemistry.

[9]  John H. Morris,et al.  Enhancing UCSF Chimera through web services , 2014, Nucleic Acids Res..

[10]  L. Banci,et al.  [2Fe-2S] cluster transfer in iron–sulfur protein biogenesis , 2014, Proceedings of the National Academy of Sciences.

[11]  Jiahai Zhang,et al.  Structure-guided activity enhancement and catalytic mechanism of yeast grx8. , 2014, Biochemistry.

[12]  Ben M. Webb,et al.  Protein structure modeling with MODELLER. , 2014, Methods in molecular biology.

[13]  N. Rouhier,et al.  Development of roGFP2-derived redox probes for measurement of the glutathione redox potential in the cytosol of severely glutathione-deficient rml1 seedlings , 2013, Front. Plant Sci..

[14]  A. Holmgren,et al.  Glutaredoxin regulates vascular development by reversible glutathionylation of sirtuin 1 , 2013, Proceedings of the National Academy of Sciences.

[15]  C. Lillig,et al.  Crucial function of vertebrate glutaredoxin 3 (PICOT) in iron homeostasis and hemoglobin maturation , 2013, Molecular biology of the cell.

[16]  C. Lillig,et al.  Glutaredoxins in thiol/disulfide exchange. , 2013, Antioxidants & redox signaling.

[17]  Wim F Vranken,et al.  ACPYPE - AnteChamber PYthon Parser interfacE , 2012, BMC Research Notes.

[18]  S. Labbé,et al.  Grx4 Monothiol Glutaredoxin Is Required for Iron Limitation-Dependent Inhibition of Fep1 , 2011, Eukaryotic Cell.

[19]  K. Kavanagh,et al.  The crystal structure of human GLRX5: iron-sulfur cluster co-ordination, tetrameric assembly and monomer activity. , 2011, The Biochemical journal.

[20]  Marta A. Uzarska,et al.  Cytosolic monothiol glutaredoxins function in intracellular iron sensing and trafficking via their bound iron-sulfur cluster. , 2010, Cell metabolism.

[21]  T. Dick,et al.  Fluorescent protein-based redox probes. , 2010, Antioxidants & redox signaling.

[22]  J. Tisdale,et al.  Glutaredoxin 5 deficiency causes sideroblastic anemia by specifically impairing heme biosynthesis and depleting cytosolic iron in human erythroblasts. , 2010, The Journal of clinical investigation.

[23]  R. Dror,et al.  Improved side-chain torsion potentials for the Amber ff99SB protein force field , 2010, Proteins.

[24]  J. Jacquot,et al.  Glutaredoxins: roles in iron homeostasis. , 2010, Trends in biochemical sciences.

[25]  J. Ferrer,et al.  Structural basis for delivery of the intact [Fe2S2] cluster by monothiol glutaredoxin. , 2009, Biochemistry.

[26]  A. Holmgren,et al.  Molecular Mechanisms of Thioredoxin and Glutaredoxin as Hydrogen Donors for Mammalian S Phase Ribonucleotide Reductase* , 2009, Journal of Biological Chemistry.

[27]  Marcel Deponte,et al.  Biochemical characterization of dithiol glutaredoxin 8 from Saccharomyces cerevisiae: the catalytic redox mechanism redux. , 2009, Biochemistry.

[28]  Ye Xiong,et al.  Attenuation of doxorubicin-induced cardiac injury by mitochondrial glutaredoxin 2. , 2009, Biochimica et biophysica acta.

[29]  E. Herrero,et al.  Chloroplast monothiol glutaredoxins as scaffold proteins for the assembly and delivery of [2Fe–2S] clusters , 2008, The EMBO journal.

[30]  A. Holmgren,et al.  Expression pattern of human glutaredoxin 2 isoforms: identification and characterization of two testis/cancer cell-specific isoforms. , 2008, Antioxidants & redox signaling.

[31]  A. Holmgren,et al.  Glutaredoxin systems. , 2008, Biochimica et biophysica acta.

[32]  Narayanan Eswar,et al.  Protein structure modeling with MODELLER. , 2008, Methods in molecular biology.

[33]  Jean-Pierre Jacquot,et al.  Redox-sensitive GFP in Arabidopsis thaliana is a quantitative biosensor for the redox potential of the cellular glutathione redox buffer. , 2007, The Plant journal : for cell and molecular biology.

[34]  A. Boussac,et al.  CGFS-type monothiol glutaredoxins from the cyanobacterium Synechocystis PCC6803 and other evolutionary distant model organisms possess a glutathione-ligated [2Fe-2S] cluster. , 2007, Biochemistry.

[35]  A. Iolascon,et al.  The human counterpart of zebrafish shiraz shows sideroblastic-like microcytic anemia and iron overload. , 2007, Blood.

[36]  Gerhard Klebe,et al.  PDB2PQR: expanding and upgrading automated preparation of biomolecular structures for molecular simulations , 2007, Nucleic Acids Res..

[37]  Sung-Kun Kim,et al.  Functional, structural, and spectroscopic characterization of a glutathione-ligated [2Fe–2S] cluster in poplar glutaredoxin C1 , 2007, Proceedings of the National Academy of Sciences.

[38]  E. Herrero,et al.  Monothiol glutaredoxins: a common domain for multiple functions , 2007, Cellular and Molecular Life Sciences.

[39]  K. Kavanagh,et al.  Reversible Sequestration of Active Site Cysteines in a 2Fe-2S-bridged Dimer Provides a Mechanism for Glutaredoxin 2 Regulation in Human Mitochondria* , 2007, Journal of Biological Chemistry.

[40]  A. Holmgren,et al.  How does iron-sulfur cluster coordination regulate the activity of human glutaredoxin 2? , 2007, Antioxidants & redox signaling.

[41]  George T Detitta,et al.  Thermofluor-based high-throughput stability optimization of proteins for structural studies. , 2006, Analytical biochemistry.

[42]  C. Jin,et al.  Structural insight into poplar glutaredoxin C1 with a bridging iron-sulfur cluster at the active site. , 2006, Biochemistry.

[43]  Gerrit Groenhof,et al.  GROMACS: Fast, flexible, and free , 2005, J. Comput. Chem..

[44]  B. Paw,et al.  Deficiency of glutaredoxin 5 reveals Fe–S clusters are required for vertebrate haem synthesis , 2005, Nature.

[45]  T. Hurd,et al.  Glutathionylation of mitochondrial proteins. , 2005, Antioxidants & redox signaling.

[46]  A. Holmgren,et al.  Characterization of human glutaredoxin 2 as iron-sulfur protein: a possible role as redox sensor. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[47]  S. Orrenius,et al.  Overexpression of glutaredoxin 2 attenuates apoptosis by preventing cytochrome c release. , 2005, Biochemical and biophysical research communications.

[48]  Conrad C. Huang,et al.  UCSF Chimera—A visualization system for exploratory research and analysis , 2004, J. Comput. Chem..

[49]  A. Holmgren,et al.  Short interfering RNA-mediated silencing of glutaredoxin 2 increases the sensitivity of HeLa cells toward doxorubicin and phenylarsine oxide. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[50]  Junmei Wang,et al.  Development and testing of a general amber force field , 2004, J. Comput. Chem..

[51]  R. Lill,et al.  The Heme Synthesis Defect of Mutants Impaired in Mitochondrial Iron-Sulfur Protein Biogenesis Is Caused by Reversible Inhibition of Ferrochelatase* , 2004, Journal of Biological Chemistry.

[52]  A. Holmgren,et al.  Human Mitochondrial Glutaredoxin Reduces S-Glutathionylated Proteins with High Affinity Accepting Electrons from Either Glutathione or Thioredoxin Reductase* , 2004, Journal of Biological Chemistry.

[53]  R. Lill,et al.  Components involved in assembly and dislocation of iron–sulfur clusters on the scaffold protein Isu1p , 2003, The EMBO journal.

[54]  E. R. Taylor,et al.  Reversible Glutathionylation of Complex I Increases Mitochondrial Superoxide Formation* , 2003, Journal of Biological Chemistry.

[55]  G.,et al.  Yeast Sulfate-reducing System , 2003 .

[56]  Christopher I. Bayly,et al.  Fast, efficient generation of high‐quality atomic charges. AM1‐BCC model: II. Parameterization and validation , 2002, J. Comput. Chem..

[57]  Enrique Herrero,et al.  Grx5 is a mitochondrial glutaredoxin required for the activity of iron/sulfur enzymes. , 2002, Molecular biology of the cell.

[58]  Nathan A. Baker,et al.  Electrostatics of nanosystems: Application to microtubules and the ribosome , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[59]  A. Holmgren,et al.  Cloning and Expression of a Novel Human Glutaredoxin (Grx2) with Mitochondrial and Nuclear Isoforms* , 2001, The Journal of Biological Chemistry.

[60]  Berk Hess,et al.  LINCS: A linear constraint solver for molecular simulations , 1997, J. Comput. Chem..

[61]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[62]  J. Martin,et al.  Thioredoxin--a fold for all reasons. , 1995, Structure.

[63]  T. Darden,et al.  Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems , 1993 .

[64]  S. Gravina,et al.  Thioltransferase is a specific glutathionyl mixed disulfide oxidoreductase. , 1993, Biochemistry.

[65]  A. Holmgren,et al.  Thioredoxin or glutaredoxin in Escherichia coli is essential for sulfate reduction but not for deoxyribonucleotide synthesis , 1990, Journal of bacteriology.

[66]  W. Fish,et al.  Rapid colorimetric micromethod for the quantitation of complexed iron in biological samples. , 1988, Methods in enzymology.

[67]  H. William Some observations concerning the S-nitroso and S-phenylsulphonyl derivatives of L-cysteine and glutathione , 1985 .

[68]  M. Parrinello,et al.  Polymorphic transitions in single crystals: A new molecular dynamics method , 1981 .

[69]  George M. Whitesides,et al.  Rate constants and equilibrium constants for thiol-disulfide interchange reactions involving oxidized glutathione , 1980 .

[70]  A. Holmgren Hydrogen donor system for Escherichia coli ribonucleoside-diphosphate reductase dependent upon glutathione. , 1976, Proceedings of the National Academy of Sciences of the United States of America.

[71]  L. G. Wilson,et al.  Yeast sulfate-reducing system. I. Reduction of sulfate to sulfite. , 1961, The Journal of biological chemistry.