Pseudoknots in RNA folding landscapes SUPPLEMENTAL MATERIAL

Pseudoknots in RNA folding landscapes SUPPLEMENTAL MATERIAL Marcel Kucharik1, Ivo L. Hofacker1−3, Peter F. Stadler1,4−7, and Jing Qin1,3,8 Institute for Theoretical Chemistry, Univ. Vienna, Wahringerstr. 17, 1090 Vienna, Austria Research group BCB, Faculty of Computer Science, Univ. Vienna, Austria RTH, University of Copenhagen, Gronnegardsvej 3, Frederiksberg, Denmark Dept. of Computer Science & IZBI & iDiv & LIFE, Leipzig Univ., Hartelstr. 16-18, Leipzig, Germany Max Planck Institute for Mathematics in the Sciences, Inselstr. 22, Leipzig, Germany Fraunhofer Institute IZI, Perlickstr. 1, Leipzig, Germany Santa Fe Institute, 1399 Hyde Park Rd., Santa Fe, NM87501, USA IMADA, Univ. Southern Denmark, Campusvej 55, Odense, Denmark.

[1]  J. Wedekind,et al.  Single transcriptional and translational preQ1 riboswitches adopt similar pre-folded ensembles that follow distinct folding pathways into the same ligand-bound structure , 2013, Nucleic acids research.

[2]  Christian M. Reidys,et al.  Topology and prediction of RNA pseudoknots , 2011, Bioinform..

[3]  Ján Manuch,et al.  NP-completeness of the energy barrier problem without pseudoknots and temporary arcs , 2011, Natural Computing.

[4]  Awad H. Al-Mohy,et al.  A New Scaling and Squaring Algorithm for the Matrix Exponential , 2009, SIAM J. Matrix Anal. Appl..

[5]  Michela Taufer,et al.  PseudoBase++: an extension of PseudoBase for easy searching, formatting and visualization of pseudoknots , 2008, Nucleic Acids Res..

[6]  Anne Condon,et al.  RNA STRAND: The RNA Secondary Structure and Statistical Analysis Database , 2008, BMC Bioinformatics.

[7]  A. Zee,et al.  Topological classification of RNA structures. , 2006, Journal of molecular biology.

[8]  L. Scott,et al.  RNA helical packing in solution: NMR structure of a 30 kDa GAAA tetraloop-receptor complex. , 2005, Journal of molecular biology.

[9]  Shenghua Huang,et al.  Structural insights into SRP RNA: an induced fit mechanism for SRP assembly. , 2005, RNA.

[10]  Jimin Wang,et al.  The structure of a ribosomal protein S8/spc operon mRNA complex. , 2004, RNA.

[11]  M. Summers,et al.  NMR structure of the 101-nucleotide core encapsidation signal of the Moloney murine leukemia virus. , 2004, Journal of molecular biology.

[12]  Peter F. Stadler,et al.  Exact Folding Dynamics of RNA Secondary Structures , 2003 .

[13]  Christian Zwieb,et al.  tmRDB (tmRNA database) , 2003, Nucleic Acids Res..

[14]  Christian Zwieb,et al.  SRPDB: Signal Recognition Particle Database , 2003, Nucleic Acids Res..

[15]  Kyungsook Han,et al.  PseudoViewer: automatic visualization of RNA pseudoknots , 2002, ISMB.

[16]  Michael T. Wolfinger,et al.  Barrier Trees of Degenerate Landscapes , 2002 .

[17]  Christian M. Reidys,et al.  Combinatorial Landscapes , 2002, SIAM Rev..

[18]  Christian Zwieb,et al.  SRPDB (Signal Recognition Particle Database) , 2001, Nucleic Acids Res..

[19]  Tatsuya Akutsu,et al.  Dynamic programming algorithms for RNA secondary structure prediction with pseudoknots , 2000, Discret. Appl. Math..

[20]  E. Siggia,et al.  Modeling RNA folding paths with pseudoknots: application to hepatitis delta virus ribozyme. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[21]  Christian Zwieb,et al.  tmRDB (tmRNA database) , 2000, Nucleic Acids Res..

[22]  Christian N. S. Pedersen,et al.  RNA Pseudoknot Prediction in Energy-Based Models , 2000, J. Comput. Biol..

[23]  J. Sabina,et al.  Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. , 1999, Journal of molecular biology.

[24]  P. Sibani,et al.  The lid method for exhaustive exploration of metastable states of complex systems , 1998, physics/9808030.

[25]  Walter Fontana,et al.  Fast folding and comparison of RNA secondary structures , 1994 .