Time-temperature-transformation and continuous-heating-transformation diagrams of GeSb2Te4 from nanosecond-long ab initio molecular dynamics simulations
暂无分享,去创建一个
Michael B. Sullivan | Kewu Bai | Paulo S. Branicio | K. Bai | Teck L. Tan | T. L. Tan | M. Sullivan | Paulo S Branicio
[1] J. Casas-Vazquez,et al. Crystallization kinetics of a Se–Ge–Sb alloy glass , 1976 .
[2] Matthias Wuttig,et al. Phase-change materials: Fast transformers. , 2012, Nature materials.
[3] K. Hashimoto,et al. Amorphous and nanocrystalline materials : preparation, properties, and applications , 2001 .
[4] Matthias Wuttig,et al. Density changes upon crystallization of Ge2Sb2.04Te4.74 films , 2002 .
[5] W. J. Wang,et al. Breaking the Speed Limits of Phase-Change Memory , 2012, Science.
[6] Wei Zhang,et al. Role of vacancies in metal-insulator transitions of crystalline phase-change materials. , 2012, Nature materials.
[7] L. Gauckler,et al. Time–Temperature–Transformation (TTT) Diagrams for Crystallization of Metal Oxide Thin Films , 2010 .
[8] M. P. Anantram,et al. A multi-scale analysis of the crystallization of amorphous germanium telluride using ab initio simulations and classical crystallization theory , 2014 .
[9] Burke,et al. Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.
[10] S. Elliott,et al. Microscopic origin of the fast crystallization ability of Ge-Sb-Te phase-change memory materials. , 2008, Nature materials.
[11] D. Turnbull. Formation of Crystal Nuclei in Liquid Metals , 1950 .
[12] In situ transmission electron microscopy study of the crystallization of Ge2Sb2Te5 , 2004 .
[13] G. Trápaga,et al. Model for isothermal crystallization kinetics with metastable phase formation , 2003 .
[14] S. Elliott,et al. Ab Initio computer simulation of the early stages of crystallization: application to Ge(2)Sb(2)Te(5) phase-change materials. , 2011, Physical review letters.
[15] Behrad Gholipour,et al. Characterization of supercooled liquid Ge2Sb2Te5 and its crystallization by ultrafast-heating calorimetry. , 2012, Nature materials.
[16] M. Wuttig,et al. Phase-change materials for rewriteable data storage. , 2007, Nature materials.
[17] M. Wuttig,et al. Atomic force microscopy measurements of crystal nucleation and growth rates in thin films of amorphous Te alloys , 2004 .
[18] G. Kresse,et al. Ab initio molecular dynamics for liquid metals. , 1993 .
[19] R. Sear. Nucleation: theory and applications to protein solutions and colloidal suspensions , 2007 .
[20] Kumar Virwani,et al. Observation and modeling of polycrystalline grain formation in Ge2Sb2Te5 , 2012 .
[21] S. Song,et al. Building blocks of amorphous Ge{sub 2}Sb{sub 2}Te{sub 5} , 2007 .
[22] N. Yamada,et al. Rapid‐phase transitions of GeTe‐Sb2Te3 pseudobinary amorphous thin films for an optical disk memory , 1991 .
[23] Noboru Yamada,et al. Structural investigation of GeSb 2 Te 4 : A high-speed phase-change material , 2004 .
[24] Robert O. Jones,et al. Simulation of crystallization in Ge 2 Sb 2 Te 5 : A memory effect in the canonical phase-change material , 2014 .
[25] Mehdi Asheghi,et al. Ultrafast characterization of phase-change material crystallization properties in the melt-quenched amorphous phase. , 2014, Nano letters.
[26] D. Ielmini,et al. Phase change materials and their application to nonvolatile memories. , 2010, Chemical reviews.
[27] S. Song,et al. Building blocks of amorphous Ge2Sb2Te5 , 2007 .
[28] O. Cueto,et al. Coupling the level set method with an electrothermal solver to simulate GST based PCM cells , 2011, 2011 International Conference on Simulation of Semiconductor Processes and Devices.
[29] R. Zonca,et al. Crystal nucleation and growth processes in Ge2Sb2Te5 , 2004 .
[30] G. Trápaga,et al. Structural and electrical properties of Ge1Sb2Te4 face centered cubic phase , 2008 .
[31] Young Kook Lee,et al. Effect of Heating Rate on the Activation Energy for Crystallization of Amorphous Ge2Sb2Te5 Thin Film , 2009 .
[32] Kresse,et al. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.
[33] H. E. Kissinger. Reaction Kinetics in Differential Thermal Analysis , 1957 .
[34] Y. Liu,et al. Evaluation Of Glass-Forming Ability , 2008 .
[35] R. O. Jones,et al. Nucleus-driven crystallization of amorphous Ge2Sb2Te5: A density functional study , 2012 .
[36] V. Weidenhof,et al. Structural transformations of Ge2Sb2Te5 films studied by electrical resistance measurements , 2000 .
[37] David Alan Drabold,et al. Atomistic origin of rapid crystallization of Ag‐doped Ge–Sb–Te alloys: A joint experimental and theoretical study , 2013, 1302.5757.
[38] M. A. Webb,et al. Local order in amorphous $Ge_2Sb_2Te_5$ and $GeSb_2Te_4$ , 2008 .
[39] Sébastien Le Roux,et al. Ring statistics analysis of topological networks: New approach and application to amorphous GeS2 and SiO2 systems , 2010 .
[40] Structural insights into the formation and evolution of amorphous phase‐change materials , 2013 .
[41] G. Nolze,et al. POWDER CELL– a program for the representation and manipulation of crystal structures and calculation of the resulting X‐ray powder patterns , 1996 .
[42] R. O. Jones,et al. Structural phase transitions on the nanoscale: The crucial pattern in the phase-change materials Ge2Sb2Te5 and GeTe , 2007 .
[43] M. Salinga,et al. A map for phase-change materials. , 2008, Nature materials.
[44] Blöchl,et al. Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.
[45] Matthias Wuttig,et al. Towards a universal memory? , 2005, Nature materials.