Time-temperature-transformation and continuous-heating-transformation diagrams of GeSb2Te4 from nanosecond-long ab initio molecular dynamics simulations

Abstract We use ab initio molecular dynamics (AIMD) simulations to build an amorphous model of GeSb 2 Te 4 and nanosecond-long annealing AIMD simulations to construct its Time-Temperature-Transformation (TTT) and Continuous-Heating-Transformation (CHT) diagrams. The critical cooling rate for amorphous GeSb 2 Te 4 , derived from the “nose” of the TTT diagram, is in the range 470–1100 K/ns. The Kissinger analysis of the non-isothermal crystallization kinetics suggests that it follows a non-Arrhenius crystallization behavior in which the crystallization temperature is upshifted by the heating rates. These results, from unprecedentedly long AIMD simulations, provide a detailed picture of the complex crystallization of GST alloys at the extremely small time and length scales relevant to phase change memory devices.

[1]  J. Casas-Vazquez,et al.  Crystallization kinetics of a Se–Ge–Sb alloy glass , 1976 .

[2]  Matthias Wuttig,et al.  Phase-change materials: Fast transformers. , 2012, Nature materials.

[3]  K. Hashimoto,et al.  Amorphous and nanocrystalline materials : preparation, properties, and applications , 2001 .

[4]  Matthias Wuttig,et al.  Density changes upon crystallization of Ge2Sb2.04Te4.74 films , 2002 .

[5]  W. J. Wang,et al.  Breaking the Speed Limits of Phase-Change Memory , 2012, Science.

[6]  Wei Zhang,et al.  Role of vacancies in metal-insulator transitions of crystalline phase-change materials. , 2012, Nature materials.

[7]  L. Gauckler,et al.  Time–Temperature–Transformation (TTT) Diagrams for Crystallization of Metal Oxide Thin Films , 2010 .

[8]  M. P. Anantram,et al.  A multi-scale analysis of the crystallization of amorphous germanium telluride using ab initio simulations and classical crystallization theory , 2014 .

[9]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[10]  S. Elliott,et al.  Microscopic origin of the fast crystallization ability of Ge-Sb-Te phase-change memory materials. , 2008, Nature materials.

[11]  D. Turnbull Formation of Crystal Nuclei in Liquid Metals , 1950 .

[12]  In situ transmission electron microscopy study of the crystallization of Ge2Sb2Te5 , 2004 .

[13]  G. Trápaga,et al.  Model for isothermal crystallization kinetics with metastable phase formation , 2003 .

[14]  S. Elliott,et al.  Ab Initio computer simulation of the early stages of crystallization: application to Ge(2)Sb(2)Te(5) phase-change materials. , 2011, Physical review letters.

[15]  Behrad Gholipour,et al.  Characterization of supercooled liquid Ge2Sb2Te5 and its crystallization by ultrafast-heating calorimetry. , 2012, Nature materials.

[16]  M. Wuttig,et al.  Phase-change materials for rewriteable data storage. , 2007, Nature materials.

[17]  M. Wuttig,et al.  Atomic force microscopy measurements of crystal nucleation and growth rates in thin films of amorphous Te alloys , 2004 .

[18]  G. Kresse,et al.  Ab initio molecular dynamics for liquid metals. , 1993 .

[19]  R. Sear Nucleation: theory and applications to protein solutions and colloidal suspensions , 2007 .

[20]  Kumar Virwani,et al.  Observation and modeling of polycrystalline grain formation in Ge2Sb2Te5 , 2012 .

[21]  S. Song,et al.  Building blocks of amorphous Ge{sub 2}Sb{sub 2}Te{sub 5} , 2007 .

[22]  N. Yamada,et al.  Rapid‐phase transitions of GeTe‐Sb2Te3 pseudobinary amorphous thin films for an optical disk memory , 1991 .

[23]  Noboru Yamada,et al.  Structural investigation of GeSb 2 Te 4 : A high-speed phase-change material , 2004 .

[24]  Robert O. Jones,et al.  Simulation of crystallization in Ge 2 Sb 2 Te 5 : A memory effect in the canonical phase-change material , 2014 .

[25]  Mehdi Asheghi,et al.  Ultrafast characterization of phase-change material crystallization properties in the melt-quenched amorphous phase. , 2014, Nano letters.

[26]  D. Ielmini,et al.  Phase change materials and their application to nonvolatile memories. , 2010, Chemical reviews.

[27]  S. Song,et al.  Building blocks of amorphous Ge2Sb2Te5 , 2007 .

[28]  O. Cueto,et al.  Coupling the level set method with an electrothermal solver to simulate GST based PCM cells , 2011, 2011 International Conference on Simulation of Semiconductor Processes and Devices.

[29]  R. Zonca,et al.  Crystal nucleation and growth processes in Ge2Sb2Te5 , 2004 .

[30]  G. Trápaga,et al.  Structural and electrical properties of Ge1Sb2Te4 face centered cubic phase , 2008 .

[31]  Young Kook Lee,et al.  Effect of Heating Rate on the Activation Energy for Crystallization of Amorphous Ge2Sb2Te5 Thin Film , 2009 .

[32]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[33]  H. E. Kissinger Reaction Kinetics in Differential Thermal Analysis , 1957 .

[34]  Y. Liu,et al.  Evaluation Of Glass-Forming Ability , 2008 .

[35]  R. O. Jones,et al.  Nucleus-driven crystallization of amorphous Ge2Sb2Te5: A density functional study , 2012 .

[36]  V. Weidenhof,et al.  Structural transformations of Ge2Sb2Te5 films studied by electrical resistance measurements , 2000 .

[37]  David Alan Drabold,et al.  Atomistic origin of rapid crystallization of Ag‐doped Ge–Sb–Te alloys: A joint experimental and theoretical study , 2013, 1302.5757.

[38]  M. A. Webb,et al.  Local order in amorphous $Ge_2Sb_2Te_5$ and $GeSb_2Te_4$ , 2008 .

[39]  Sébastien Le Roux,et al.  Ring statistics analysis of topological networks: New approach and application to amorphous GeS2 and SiO2 systems , 2010 .

[40]  Structural insights into the formation and evolution of amorphous phase‐change materials , 2013 .

[41]  G. Nolze,et al.  POWDER CELL– a program for the representation and manipulation of crystal structures and calculation of the resulting X‐ray powder patterns , 1996 .

[42]  R. O. Jones,et al.  Structural phase transitions on the nanoscale: The crucial pattern in the phase-change materials Ge2Sb2Te5 and GeTe , 2007 .

[43]  M. Salinga,et al.  A map for phase-change materials. , 2008, Nature materials.

[44]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[45]  Matthias Wuttig,et al.  Towards a universal memory? , 2005, Nature materials.