From (Quantified) Boolean Formulae to Answer Set Programming

We propose in this article a translation from quantified Boolean formulae to answer set programming. The computation of a solution of a quantified Boolean formula is then equivalent to the computation of a stable model for a normal logic program. The case of unquantified Boolean formulae is also considered since it is equivalent to the case of quantified Boolean formulae with only existential quantifiers.

[1]  Martin Gebser,et al.  GrinGo : A New Grounder for Answer Set Programming , 2007, LPNMR.

[2]  David A. Basin,et al.  QUBOS: Deciding Quantified Boolean Logic Using Propositional Satisfiability Solvers , 2002, FMCAD.

[3]  Sharad Malik,et al.  Conflict driven learning in a quantified Boolean Satisfiability solver , 2002, ICCAD 2002.

[4]  Marco Benedetti,et al.  Evaluating QBFs via Symbolic Skolemization , 2005, LPAR.

[5]  Edmund M. Clarke,et al.  Satisfiability Checking of Non-clausal Formulas Using General Matings , 2006, SAT.

[6]  Fahiem Bacchus,et al.  Binary Clause Reasoning in QBF , 2006, SAT.

[7]  Lintao Zhang,et al.  Solving QBF with combined conjunctive and disjunctive normal form , 2006, AAAI 2006.

[8]  Martin Gebser,et al.  The nomore++ System , 2005, LPNMR.

[9]  Marco Schaerf,et al.  An Algorithm to Evaluate Quantified Boolean Formulae and Its Experimental Evaluation , 2002, Journal of Automated Reasoning.

[10]  Igor Stéphan Boolean Propagation Based on Literals for Quantified Boolean Formulae , 2006, ECAI.

[11]  Uwe Egly On Different Structure-Preserving Translations to Normal Form , 1996, J. Symb. Comput..

[12]  Jussi Rintanen,et al.  Improvements to the Evaluation of Quantified Boolean Formulae , 1999, IJCAI.

[13]  Martin Gebser,et al.  Conflict-Driven Answer Set Solving , 2007, IJCAI.

[14]  Volker Sorge,et al.  Applying SAT Solving in Classification of Finite Algebras , 2005, Journal of Automated Reasoning.

[15]  Ilkka Niemelä,et al.  DES: a Challenge Problem for Nonmonotonic Reasoning Systems , 2000, ArXiv.

[16]  Kwang-Ting Cheng,et al.  A Signal Correlation Guided Circuit-SAT Solver , 2004, J. Univers. Comput. Sci..

[17]  Toby Walsh,et al.  Solving Non-clausal Formulas with DPLL search , 2004, SAT.

[18]  Sharad Malik,et al.  Chaff: engineering an efficient SAT solver , 2001, Proceedings of the 38th Design Automation Conference (IEEE Cat. No.01CH37232).

[19]  Kwang-Ting Cheng,et al.  An efficient sequential SAT solver with improved search strategies , 2005, Design, Automation and Test in Europe.

[20]  U. Egly,et al.  A Solver for QBFs in Nonprenex Form , 2006, ECAI.

[21]  Larry J. Stockmeyer,et al.  The Polynomial-Time Hierarchy , 1976, Theor. Comput. Sci..

[22]  Armin Biere,et al.  Resolve and Expand , 2004, SAT.

[23]  Armando Tacchella,et al.  Backjumping for Quantified Boolean Logic satisfiability , 2001, Artif. Intell..

[24]  Wolfgang Faber,et al.  The DLV system for knowledge representation and reasoning , 2002, TOCL.

[25]  Niklas Sörensson,et al.  An Extensible SAT-solver , 2003, SAT.

[26]  Reinhold Letz,et al.  Lemma and Model Caching in Decision Procedures for Quantified Boolean Formulas , 2002, TABLEAUX.

[27]  Fangzhen Lin,et al.  ASSAT: computing answer sets of a logic program by SAT solvers , 2002, Artif. Intell..

[28]  Ilkka Niemelä,et al.  Logic programs with stable model semantics as a constraint programming paradigm , 1999, Annals of Mathematics and Artificial Intelligence.

[29]  David A. Plaisted,et al.  A Structure-Preserving Clause Form Translation , 1986, J. Symb. Comput..

[30]  Pierre Marquis,et al.  Representing Policies for Quantified Boolean Formulae , 2006, KR.

[31]  Chu Min Li,et al.  Heuristics Based on Unit Propagation for Satisfiability Problems , 1997, IJCAI.

[32]  Stefan Woltran,et al.  Computing Stable Models with Quantified Boolean Formulas: Some Experimental Results , 2001, Answer Set Programming.

[33]  R. Smullyan First-Order Logic , 1968 .