Bridging quantum and classical plasmonics with a quantum-corrected model

Electromagnetic coupling between plasmonic resonances in metallic nanoparticles allows for engineering of the optical response and generation of strong localized near-fields. Classical electrodynamics fails to describe this coupling across sub-nanometer gaps, where quantum effects become important owing to non-local screening and the spill-out of electrons. However, full quantum simulations are not presently feasible for realistically sized systems. Here we present a novel approach, the quantum-corrected model (QCM), that incorporates quantum-mechanical effects within a classical electrodynamic framework. The QCM approach models the junction between adjacent nanoparticles by means of a local dielectric response that includes electron tunnelling and tunnelling resistivity at the gap and can be integrated within a classical electrodynamical description of large and complex structures. The QCM predicts optical properties in excellent agreement with fully quantum mechanical calculations for small interacting systems, opening a new venue for addressing quantum effects in realistic plasmonic systems.

[1]  Hideki T. Miyazaki,et al.  Resonant light scattering from individual Ag nanoparticles and particle pairs , 2002 .

[2]  H. Metiu Surface enhanced spectroscopy , 1984 .

[3]  Mark I. Stockman,et al.  Dipolar emitters at nanoscale proximity of metal surfaces: Giant enhancement of relaxation in microscopic theory , 2004 .

[4]  P. Echenique,et al.  Image potential states on metal surfaces: binding energies and wave functions , 1999 .

[5]  Vladimir M. Shalaev,et al.  Plasmonics Goes Quantum , 2011, Science.

[6]  J. Greffet,et al.  Optical patch antennas for single photon emission using surface plasmon resonances. , 2010, Physical review letters.

[7]  P. Nordlander,et al.  Quantum mechanical study of the coupling of plasmon excitations to atomic-scale electron transport. , 2011, The Journal of chemical physics.

[8]  Xiang Zhang,et al.  Probing the electromagnetic field of a 15-nanometre hotspot by single molecule imaging , 2011, Nature.

[9]  Jean-Jacques Greffet,et al.  Resonant optical antennas , 2013, The 8th European Conference on Antennas and Propagation (EuCAP 2014).

[10]  F. G. D. Abajo,et al.  Retarded field calculation of electron energy loss in inhomogeneous dielectrics , 2002 .

[11]  N J Halas,et al.  Optical spectroscopy of conductive junctions in plasmonic cavities. , 2010, Nano letters.

[12]  Xu,et al.  Electromagnetic contributions to single-molecule sensitivity in surface-enhanced raman scattering , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[13]  A. Borisov,et al.  Wave packet propagation study of the charge transfer interaction in the F−–Cu(1 1 1) and –Ag(1 1 1) systems , 2001, physics/0103014.

[14]  Dieter W. Pohl,et al.  Bow-tie optical antenna probes for single-emitter scanning near-field optical microscopy , 2007 .

[15]  Sunghoon Kwon,et al.  Highly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap. , 2011, Nature nanotechnology.

[16]  R. Kosloff,et al.  A fourier method solution for the time dependent Schrödinger equation as a tool in molecular dynamics , 1983 .

[17]  Á. Rubio,et al.  Time-dependent density-functional theory. , 2009, Physical chemistry chemical physics : PCCP.

[18]  F. D. Abajo,et al.  Spatial Nonlocality in the Optical Response of Metal Nanoparticles , 2011 .

[19]  Richard W. Taylor,et al.  Precise subnanometer plasmonic junctions for SERS within gold nanoparticle assemblies using cucurbit[n]uril "glue". , 2011, ACS nano.

[20]  Zongfu Yu,et al.  Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna , 2009 .

[21]  J. M. Pitarke,et al.  Tunneling spectroscopy: surface geometry and interface potential effects , 1990 .

[22]  Peter Nordlander,et al.  Electromigrated nanoscale gaps for surface-enhanced Raman spectroscopy. , 2007, Nano letters.

[23]  Emil Prodan,et al.  Electronic Structure and Optical Properties of Gold Nanoshells , 2003 .

[24]  Javier Aizpurua,et al.  Controlling the near-field oscillations of loaded plasmonic nanoantennas , 2009 .

[25]  Yannouleas,et al.  Evolution of the optical properties of alkali-metal microclusters towards the bulk: The matrix random-phase-approximation description. , 1993, Physical review. B, Condensed matter.

[26]  In-Yong Park,et al.  High-harmonic generation by resonant plasmon field enhancement , 2008, Nature.

[27]  G S Kino,et al.  Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas. , 2005, Physical review letters.

[28]  Bernhard Lamprecht,et al.  Optical properties of two interacting gold nanoparticles , 2003 .

[29]  B. Derjaguin,et al.  Untersuchungen über die Reibung und Adhäsion, IV , 1934 .

[30]  Javier Aizpurua,et al.  Interparticle coupling effects in surface-enhanced Raman scattering , 2001, SPIE BiOS.

[31]  Kin Hung Fung,et al.  Nonlinear optical response from arrays of Au bowtie nanoantennas. , 2011, Nano letters.

[32]  F. D. Abajo,et al.  Nonlocal Effects in the Plasmons of Strongly Interacting Nanoparticles, Dimers, and Waveguides , 2008, 0802.0040.

[33]  R. Ruppin Optical properties of a metal sphere with a diffuse surface , 1976 .

[34]  J. Israelachvili,et al.  Forces due to structure in a thin liquid crystal film , 1981 .

[35]  Stefan A. Maier,et al.  Broadband nano-focusing of light using kissing nanowires , 2010 .

[36]  Emil Prodan,et al.  Quantum description of the plasmon resonances of a nanoparticle dimer. , 2009, Nano letters.

[37]  Hongxing Xu,et al.  Spectroscopy of Single Hemoglobin Molecules by Surface Enhanced Raman Scattering , 1999 .

[38]  F. Flores,et al.  STM-theory: Image potential, chemistry and surface relaxation , 2006 .

[39]  A. Borisov,et al.  Time-dependent density-functional calculation of the stopping power for protons and antiprotons in metals , 2007 .

[40]  Biao Wu,et al.  Effects of quantum tunneling in metal nanogap on surface-enhanced Raman scattering , 2009, 0901.0607.

[41]  David R. Smith,et al.  Interparticle Coupling Effects on Plasmon Resonances of Nanogold Particles , 2003 .

[42]  A. Borisov,et al.  Building up the screening below the femtosecond scale , 2004 .

[43]  O. Muskens,et al.  Optical scattering resonances of single and coupled dimer plasmonic nanoantennas. , 2006, cond-mat/0612689.

[44]  J. Pendry,et al.  Plasmonic light-harvesting devices over the whole visible spectrum. , 2010, Nano letters.

[45]  Javier Aizpurua,et al.  Close encounters between two nanoshells. , 2008, Nano letters.

[46]  G. Scuseria,et al.  An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules , 1998 .

[47]  A. Borisov,et al.  Electronic excitations in metals and at metal surfaces. , 2006, Chemical reviews.

[48]  Javier Aizpurua,et al.  Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers. , 2006, Optics Express.

[49]  F. Garci,et al.  Numerical simulation of electron energy loss near inhomogeneous dielectrics , 1997 .

[50]  Arto V. Nurmikko,et al.  Strongly Interacting Plasmon Nanoparticle Pairs: From Dipole−Dipole Interaction to Conductively Coupled Regime , 2004 .

[51]  Lukas Novotny,et al.  Optical frequency mixing at coupled gold nanoparticles. , 2007, Physical review letters.

[52]  George C Schatz,et al.  Optical properties of nanowire dimers with a spatially nonlocal dielectric function. , 2010, Nano letters.

[53]  Juan Carlos Cuevas,et al.  Optical rectification and field enhancement in a plasmonic nanogap. , 2010, Nature nanotechnology.