Structure-preserving finite element methods for stationary MHD models
暂无分享,去创建一个
Jinchao Xu | Kaibo Hu | Jinchao Xu | Kaibo Hu
[1] Ming-Jiu Ni,et al. A consistent and conservative scheme for incompressible MHD flows at a low magnetic Reynolds number. Part III: On a staggered mesh , 2012, J. Comput. Phys..
[2] Vivette Girault,et al. Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.
[3] Jinchao Xu,et al. Stable finite element methods preserving $$\nabla \cdot \varvec{B}=0$$∇·B=0 exactly for MHD models , 2017, Numerische Mathematik.
[4] D. Arnold,et al. Finite element exterior calculus, homological techniques, and applications , 2006, Acta Numerica.
[5] Paul R. Woodward,et al. On the Divergence-free Condition and Conservation Laws in Numerical Simulations for Supersonic Magnetohydrodynamical Flows , 1998 .
[6] J. Brackbill,et al. The Effect of Nonzero ∇ · B on the numerical solution of the magnetohydrodynamic equations☆ , 1980 .
[7] Thomas Rylander,et al. Computational Electromagnetics , 2005, Electronics, Power Electronics, Optoelectronics, Microwaves, Electromagnetics, and Radar.
[8] Jinchao Xu,et al. Robust preconditioners for incompressible MHD models , 2015, J. Comput. Phys..
[9] D. Arnold,et al. Finite element exterior calculus: From hodge theory to numerical stability , 2009, 0906.4325.
[10] Jinchao Xu,et al. Stable finite element methods preserving ∇·B=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nabla \cdot \varvec{B}= , 2014, Numerische Mathematik.
[11] Ming Wang,et al. Convergence Analysis of Triangular MAC Schemes for Two Dimensional Stokes Equations , 2015, J. Sci. Comput..
[12] M. Fortin,et al. Mixed Finite Element Methods and Applications , 2013 .
[13] Ramakanth Munipalli,et al. A current density conservative scheme for incompressible MHD flows at a low magnetic Reynolds number. Part I: On a rectangular collocated grid system , 2007, J. Comput. Phys..
[14] Richard S. Falk,et al. Local bounded cochain projections , 2014, Math. Comput..
[15] A. Bossavit. Computational Electromagnetism: Variational Formulations, Complementarity, Edge Elements , 1997 .
[16] M. Gunzburger,et al. On the existence, uniqueness, and finite element approximation of solutions of the equations of stationary, incompressible magnetohydrodynamics , 1991 .
[17] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[18] Dominik Schötzau,et al. Mixed finite element methods for stationary incompressible magneto–hydrodynamics , 2004, Numerische Mathematik.
[19] M. Ni,et al. Numerical study of MHD pressure drop in rectangular ducts with insulating coatings , 2010 .
[20] R. Hiptmair. Finite elements in computational electromagnetism , 2002, Acta Numerica.
[21] F. Brezzi. On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers , 1974 .
[22] Hans Z. Munthe-Kaas,et al. Topics in structure-preserving discretization* , 2011, Acta Numerica.