Random Subspace Ensembles for fMRI Classification

Classification of brain images obtained through functional magnetic resonance imaging (fMRI) poses a serious challenge to pattern recognition and machine learning due to the extremely large feature-to-instance ratio. This calls for revision and adaptation of the current state-of-the-art classification methods. We investigate the suitability of the random subspace (RS) ensemble method for fMRI classification. RS samples from the original feature set and builds one (base) classifier on each subset. The ensemble assigns a class label by either majority voting or averaging of output probabilities. Looking for guidelines for setting the two parameters of the method-ensemble size and feature sample size-we introduce three criteria calculated through these parameters: usability of the selected feature sets, coverage of the set of ¿important¿ features, and feature set diversity. Optimized together, these criteria work toward producing accurate and diverse individual classifiers. RS was tested on three fMRI datasets from single-subject experiments: the Haxby data (Haxby, 2001.) and two datasets collected in-house. We found that RS with support vector machines (SVM) as the base classifier outperformed single classifiers as well as some of the most widely used classifier ensembles such as bagging, AdaBoost, random forest, and rotation forest. The closest rivals were the single SVM and bagging of SVM classifiers. We use kappa-error diagrams to understand the success of RS.

[1]  R. Passingham,et al.  Reading Hidden Intentions in the Human Brain , 2007, Current Biology.

[2]  Janaina Mourão Miranda,et al.  The impact of temporal compression and space selection on SVM analysis of single-subject and multi-subject fMRI data , 2006, NeuroImage.

[3]  David G. Stork,et al.  Pattern Classification (2nd ed.) , 1999 .

[4]  Giorgio Valentini,et al.  Bias-Variance Analysis of Support Vector Machines for the Development of SVM-Based Ensemble Methods , 2004, J. Mach. Learn. Res..

[5]  Rainer Goebel,et al.  Classification of fMRI independent components using IC-fingerprints and support vector machine classifiers , 2007, NeuroImage.

[6]  Arthur Gretton,et al.  Comparison of Pattern Recognition Methods in Classifying High-resolution Bold Signals Obtained at High Magnetic Field in Monkeys , 2008 .

[7]  Yulian Zhu,et al.  Semi-random subspace method for face recognition , 2009, Image Vis. Comput..

[8]  Shigeo Abe DrEng Pattern Classification , 2001, Springer London.

[9]  Subhash C. Bagui,et al.  Combining Pattern Classifiers: Methods and Algorithms , 2005, Technometrics.

[10]  Karl J. Friston,et al.  Dynamic discrimination analysis: A spatial–temporal SVM , 2007, NeuroImage.

[11]  Tom M. Mitchell,et al.  Machine learning classifiers and fMRI: A tutorial overview , 2009, NeuroImage.

[12]  Rainer Goebel,et al.  Combining multivariate voxel selection and support vector machines for mapping and classification of fMRI spatial patterns , 2008, NeuroImage.

[13]  Xin Yao,et al.  Diversity creation methods: a survey and categorisation , 2004, Inf. Fusion.

[14]  Marcel J. T. Reinders,et al.  Random subspace method for multivariate feature selection , 2006, Pattern Recognit. Lett..

[15]  Leo Breiman,et al.  Bagging Predictors , 1996, Machine Learning.

[16]  Sean M. Polyn,et al.  Beyond mind-reading: multi-voxel pattern analysis of fMRI data , 2006, Trends in Cognitive Sciences.

[17]  Stephen C. Strother,et al.  Support vector machines for temporal classification of block design fMRI data , 2005, NeuroImage.

[18]  Giorgio Valentini,et al.  Feature Selection Combined with Random Subspace Ensemble for Gene Expression Based Diagnosis of Malignancies , 2004, WIRN.

[19]  Eric R. Ziegel,et al.  The Elements of Statistical Learning , 2003, Technometrics.

[20]  Carlos E. Thomaz,et al.  Evaluating SVM and MLDA in the extraction of discriminant regions for mental state prediction , 2009, NeuroImage.

[21]  Masa-aki Sato,et al.  Sparse estimation automatically selects voxels relevant for the decoding of fMRI activity patterns , 2008, NeuroImage.

[22]  Rainer Goebel,et al.  Neurofeedback: A promising tool for the self-regulation of emotion networks , 2010, NeuroImage.

[23]  R. Deichmann,et al.  Real-time functional magnetic resonance imaging: methods and applications. , 2007, Magnetic resonance imaging.

[24]  Kimron L Shapiro,et al.  Imaging the attentional blink: perceptual versus attentional limitations , 2007, Neuroreport.

[25]  Janaina Mourão Miranda,et al.  Classifying brain states and determining the discriminating activation patterns: Support Vector Machine on functional MRI data , 2005, NeuroImage.

[26]  Robert P. W. Duin,et al.  Bagging, Boosting and the Random Subspace Method for Linear Classifiers , 2002, Pattern Analysis & Applications.

[27]  Qing Zhang,et al.  Analysis of positive and negative emotions in natural scene using brain activity and GIST , 2009, Neurocomputing.

[28]  C. J. Whitaker,et al.  Ten measures of diversity in classifier ensembles: limits for two classifiers , 2001 .

[29]  John A. Detre,et al.  Support vector machine learning-based fMRI data group analysis , 2007, NeuroImage.

[30]  Brian Knutson,et al.  Interpretable Classifiers for fMRI Improve Prediction of Purchases , 2008, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[31]  Markus Barth,et al.  Contrast‐to‐noise ratio (CNR) as a quality parameter in fMRI , 2007, Journal of magnetic resonance imaging : JMRI.

[32]  Yiyu Yao,et al.  Brain activation detection by neighborhood one-class SVM , 2007, Cognitive Systems Research.

[33]  Ian Witten,et al.  Data Mining , 2000 .

[34]  Janaina Mourão Miranda,et al.  Unsupervised analysis of fMRI data using kernel canonical correlation , 2007, NeuroImage.

[35]  A. Ishai,et al.  Distributed and Overlapping Representations of Faces and Objects in Ventral Temporal Cortex , 2001, Science.

[36]  Heekuck Oh,et al.  Neural Networks for Pattern Recognition , 1993, Adv. Comput..

[37]  Ian H. Witten,et al.  Data mining: practical machine learning tools and techniques, 3rd Edition , 1999 .

[38]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[39]  Yoav Freund,et al.  Experiments with a New Boosting Algorithm , 1996, ICML.

[40]  B. Everitt,et al.  Statistical methods for rates and proportions , 1973 .

[41]  David D. Cox,et al.  Functional magnetic resonance imaging (fMRI) “brain reading”: detecting and classifying distributed patterns of fMRI activity in human visual cortex , 2003, NeuroImage.

[42]  J. Ross Quinlan,et al.  C4.5: Programs for Machine Learning , 1992 .

[43]  Tom M. Mitchell,et al.  Learning to Decode Cognitive States from Brain Images , 2004, Machine Learning.

[44]  Scott A. Huettel,et al.  Local pattern classification differentiates processes of economic valuation , 2009, NeuroImage.

[45]  Giorgio Valentini,et al.  Random Aggregated and Bagged Ensembles of SVMs: An Empirical Bias?Variance Analysis , 2004, Multiple Classifier Systems.

[46]  Tom M. Mitchell,et al.  Classifying Instantaneous Cognitive States from fMRI Data , 2003, AMIA.

[47]  P. Lang International Affective Picture System (IAPS) : Technical Manual and Affective Ratings , 1995 .

[48]  Karl J. Friston,et al.  Statistical parametric mapping , 2013 .

[49]  Alberto Maria Segre,et al.  Programs for Machine Learning , 1994 .

[50]  Juan José Rodríguez Diez,et al.  Rotation Forest: A New Classifier Ensemble Method , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[51]  Tin Kam Ho,et al.  The Random Subspace Method for Constructing Decision Forests , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[52]  Nikunj C. Oza,et al.  Online Ensemble Learning , 2000, AAAI/IAAI.

[53]  Thomas G. Dietterich,et al.  Pruning Adaptive Boosting , 1997, ICML.

[54]  Michael I. Jordan,et al.  On Discriminative vs. Generative Classifiers: A comparison of logistic regression and naive Bayes , 2001, NIPS.

[55]  R. Veit,et al.  Self-regulation of local brain activity using real-time functional magnetic resonance imaging (fMRI) , 2004, Journal of Physiology-Paris.