Detection of orthogonal concepts in subspaces of high dimensional data
暂无分享,去创建一个
Emmanuel Müller | Thomas Seidl | Stephan Günnemann | Ines Färber | Stephan Günnemann | T. Seidl | Ines Färber | Emmanuel Müller
[1] Jonathan Goldstein,et al. When Is ''Nearest Neighbor'' Meaningful? , 1999, ICDT.
[2] Ira Assent,et al. DUSC: Dimensionality Unbiased Subspace Clustering , 2007, Seventh IEEE International Conference on Data Mining (ICDM 2007).
[3] Yi Zhang,et al. Entropy-based subspace clustering for mining numerical data , 1999, KDD '99.
[4] Huan Liu,et al. Subspace clustering for high dimensional data: a review , 2004, SKDD.
[5] Jörg Sander,et al. Finding non-redundant, statistically significant regions in high dimensional data: a novel approach to projected and subspace clustering , 2008, KDD.
[6] Hans-Peter Kriegel,et al. Ranking Interesting Subspaces for Clustering High Dimensional Data , 2003, PKDD.
[7] Martin Ester,et al. P3C: A Robust Projected Clustering Algorithm , 2006, Sixth International Conference on Data Mining (ICDM'06).
[8] Hans-Peter Kriegel,et al. Clustering high-dimensional data: A survey on subspace clustering, pattern-based clustering, and correlation clustering , 2009, TKDD.
[9] Hans-Peter Kriegel,et al. Density-Connected Subspace Clustering for High-Dimensional Data , 2004, SDM.
[10] Ira Assent,et al. Evaluating Clustering in Subspace Projections of High Dimensional Data , 2009, Proc. VLDB Endow..
[11] David S. Johnson,et al. Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .
[12] P. J. Green,et al. Density Estimation for Statistics and Data Analysis , 1987 .
[13] Ying Cui,et al. Non-redundant Multi-view Clustering via Orthogonalization , 2007, Seventh IEEE International Conference on Data Mining (ICDM 2007).
[14] Hans-Peter Kriegel,et al. A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise , 1996, KDD.
[15] Ira Assent,et al. INSCY: Indexing Subspace Clusters with In-Process-Removal of Redundancy , 2008, 2008 Eighth IEEE International Conference on Data Mining.
[16] Ian Davidson,et al. A principled and flexible framework for finding alternative clusterings , 2009, KDD.
[17] Steffen Bickel,et al. Multi-view clustering , 2004, Fourth IEEE International Conference on Data Mining (ICDM'04).