Dynamics Near the Subcritical Transition of the 3D Couette Flow I: Below Threshold Case

We study small disturbances to the periodic, plane Couette flow in the 3D incompressible Navier-Stokes equations at high Reynolds number $\textbf{Re}$. We prove that for sufficiently regular initial data of size $\epsilon \leq c_0\textbf{Re}^{-1}$ for some universal $c_0 > 0$, the solution is global, remains within $O(c_0)$ of the Couette flow in $L^2$, and returns to the Couette flow as $t \rightarrow \infty$. For times $t \gtrsim \textbf{Re}^{1/3}$, the streamwise dependence is damped by a mixing-enhanced dissipation effect and the solution is rapidly attracted to the class of "2.5 dimensional" streamwise-independent solutions referred to as streaks. Our analysis contains perturbations that experience a transient growth of kinetic energy from $O(\textbf{Re}^{-1})$ to $O(c_0)$ due to the algebraic linear instability known as the lift-up effect. Furthermore, solutions can exhibit a direct cascade of energy to small scales. The behavior is very different from the 2D Couette flow, in which stability is independent of $\textbf{Re}$, enstrophy experiences a direct cascade, and inviscid damping is dominant (resulting in a kind of inverse energy cascade). In 3D, inviscid damping will play a role on one component of the velocity, but the primary stability mechanism is the mixing-enhanced dissipation. Central to the proof is a detailed analysis of the interplay between the stabilizing effects of the mixing and enhanced dissipation and the destabilizing effects of the lift-up effect, vortex stretching, and weakly nonlinear instabilities connected to the non-normal nature of the linearization.

[1]  O. Reynolds III. An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels , 1883, Proceedings of the Royal Society of London.

[2]  D. Henningson,et al.  Formation of turbulent patterns near the onset of transition in plane Couette flow , 2010, Journal of Fluid Mechanics.

[3]  M. Montgomery,et al.  Vortex axisymmetrization: Dependence on azimuthal wave-number or asymmetric radial structure changes , 1995 .

[4]  H. Morita,et al.  Large time behavior and asymptotic stability of the 2D Euler and linearized Euler equations , 2009, 0905.1551.

[5]  Sergey Nazarenko,et al.  On Scaling Laws for the Transition to Turbulence in Uniform-Shear Flows , 1994 .

[6]  B. Eckhardt,et al.  Sensitive dependence on initial conditions in transition to turbulence in pipe flow , 2003, Journal of Fluid Mechanics.

[7]  N. Balmforth,et al.  Pattern formation in Hamiltonian systems with continuous spectra; a normal-form single-wave model , 2013, 1303.0065.

[8]  Nils Tillmark,et al.  Experiments on transition in plane Couette flow , 1992, Journal of Fluid Mechanics.

[9]  T. Ellingsen,et al.  Stability of linear flow , 1975 .

[10]  Fabian Waleffe,et al.  Transition in shear flows. Nonlinear normality versus non‐normal linearity , 1995 .

[11]  A. Bassom,et al.  The spiral wind-up of vorticity in an inviscid planar vortex , 1998, Journal of Fluid Mechanics.

[12]  Andrew P. Bassom,et al.  Accelerated diffusion in the centre of a vortex , 2001, Journal of Fluid Mechanics.

[13]  Steven A. Orszag,et al.  Transition to turbulence in plane Poiseuille and plane Couette flow , 1980, Journal of Fluid Mechanics.

[14]  A. Gilbert Spiral structures and spectra in two-dimensional turbulence , 1988, Journal of Fluid Mechanics.

[15]  Brent Young Landau damping in relativistic plasmas , 2014, 1408.2666.

[16]  N. Balmforth,et al.  Normal modes and continuous spectra , 1994 .

[17]  Uriel Frisch,et al.  Hydrodynamic Instability and Transition to Turbulence , 2012 .

[18]  V. Romanov Stability of plane-parallel Couette flow , 1973 .

[19]  Roy W. Gould,et al.  PLASMA WAVE ECHO. , 1967 .

[20]  J. Freidberg,et al.  Analytic fluid theory of beam spiraling in high-intensity cyclotrons , 2012, 1210.1175.

[21]  R. Danchin,et al.  Fourier Analysis and Nonlinear Partial Differential Equations , 2011 .

[22]  J. Bony,et al.  Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires , 1980 .

[23]  I. Kukavica,et al.  On the radius of analyticity of solutions to the three-dimensional Euler equations , 2008 .

[24]  D. Schecter,et al.  Inviscid damping of asymmetries on a two-dimensional vortex , 2000 .

[25]  Diffusion and Mixing in Fluid Flow , 2005, math/0509663.

[26]  T. Driscoll,et al.  A mostly linear model of transition to tur , 1995 .

[27]  R. Temam,et al.  Gevrey class regularity for the solutions of the Navier-Stokes equations , 1989 .

[28]  D. Henningson,et al.  A mechanism for bypass transition from localized disturbances in wall-bounded shear flows , 1993, Journal of Fluid Mechanics.

[29]  Daviaud,et al.  Subcritical transition to turbulence in plane Couette flow. , 1992, Physical review letters.

[30]  L. Trefethen,et al.  Spectra and Pseudospectra , 2020 .

[31]  T. Mullin Experimental Studies of Transition to Turbulence in a Pipe , 2011 .

[32]  P. Morrison,et al.  Hamiltonian description of the ideal fluid , 1998 .

[33]  Demetrios Christodoulou,et al.  Global solutions of nonlinear hyperbolic equations for small initial data , 1986 .

[34]  Jack Schaeffer,et al.  Time decay for solutions to the linearized Vlasov equation , 1994 .

[35]  Dan S. Henningson,et al.  On stability of streamwise streaks and transition thresholds in plane channel flows , 1998, Journal of Fluid Mechanics.

[36]  P. Henrik Alfredsson,et al.  Experiments on the stability of streamwise streaks in plane Poiseuille flow , 1999 .

[37]  P. S. Klebanoff,et al.  The three-dimensional nature of boundary-layer instability , 1962, Journal of Fluid Mechanics.

[38]  Christina Freytag,et al.  Stability And Transition In Shear Flows , 2016 .

[39]  L. Trefethen,et al.  Low-dimensional models of subcritical transition to turbulence , 1997 .

[40]  Andrew J. Bernoff,et al.  RAPID RELAXATION OF AN AXISYMMETRIC VORTEX , 1994 .

[41]  S. C. Reddy,et al.  Threshold Amplitudes for Transition in Channel Flows , 1994 .

[42]  Anne E. Trefethen,et al.  Hydrodynamic Stability Without Eigenvalues , 1993, Science.

[43]  Serge Alinhac The null condition for quasilinear wave equations in two space dimensions I , 2001 .

[44]  Jacques Vanneste,et al.  Nonlinear Dynamics of Anisotropic Disturbances in Plane Couette Flow , 2002, SIAM J. Appl. Math..

[45]  M. Montgomery,et al.  A theory for vortex rossby‐waves and its application to spiral bands and intensity changes in hurricanes , 1997 .

[46]  P. Rhines,et al.  How rapidly is a passive scalar mixed within closed streamlines? , 1983, Journal of Fluid Mechanics.

[47]  C. Driscoll,et al.  Observation of Diocotron Wave Echoes in a Pure Electron Plasma. , 2002 .

[48]  Marcel Oliver,et al.  Analyticity of Solutions for a Generalized Euler Equation , 1997 .

[49]  S. Jonathan Chapman,et al.  Subcritical transition in channel flows , 2002, Journal of Fluid Mechanics.

[50]  T. M. O'Neil,et al.  Phase mixing and echoes in a pure electron plasma , 2005 .

[51]  J. Velázquez,et al.  On the Existence of Exponentially Decreasing Solutions of the Nonlinear Landau Damping Problem , 2008, 0810.3456.

[52]  Chongchun Zeng,et al.  Inviscid Dynamical Structures Near Couette Flow , 2010, 1004.5149.

[53]  Louis Nirenberg,et al.  An abstract form of the nonlinear Cauchy-Kowalewski theorem , 1972 .

[54]  Grégoire Lemoult,et al.  Experimental scaling law for the subcritical transition to turbulence in plane Poiseuille flow. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[55]  T. Mullin,et al.  Scaling of the turbulence transition threshold in a pipe. , 2003, Physical review letters.

[56]  The Stability or Instability of the Steady Motions of a Perfect Liquid and of a Viscous Liquid. Part I: A Perfect Liquid , 2008 .

[57]  Lev Davidovich Landau,et al.  On the vibrations of the electronic plasma , 1946 .

[58]  Christian Zillinger,et al.  Linear Inviscid Damping for Monotone Shear Flows , 2014, 1410.7341.

[59]  Dmitri D. Ryutov,et al.  Landau damping: half a century with the great discovery , 1999 .

[60]  M. Landahl A note on an algebraic instability of inviscid parallel shear flows , 1980, Journal of Fluid Mechanics.

[61]  Andrew J. Majda,et al.  Vorticity and Incompressible Flow: Index , 2001 .

[62]  Dan S. Henningson,et al.  Bounds for threshold amplitudes in subcritical shear flows , 1994, Journal of Fluid Mechanics.

[63]  M. Nishioka,et al.  An experimental investigation of the stability of plane Poiseuille flow , 1975, Journal of Fluid Mechanics.

[64]  Margaret Beck,et al.  Metastability and rapid convergence to quasi-stationary bar states for the two-dimensional Navier–Stokes equations , 2013, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[65]  A. Craik,et al.  Non-linear resonant instability in boundary layers , 1971, Journal of Fluid Mechanics.

[66]  Vlad Vicol,et al.  Enhanced dissipation and inviscid damping in the inviscid limit of the Navier-Stokes equations near the 2 D Couette flow , 2014 .

[67]  Jack Schaeffer,et al.  On time decay rates in landau damping , 1995 .

[68]  E. Faou,et al.  Landau Damping in Sobolev Spaces for the Vlasov-HMF Model , 2014, 1403.1668.

[69]  P. Manneville,et al.  Experimental evidence of streamwise vortices as finite amplitude solutions in transitional plane Couette flow , 1998 .

[70]  Nader Masmoudi,et al.  Landau Damping: Paraproducts and Gevrey Regularity , 2013, Annals of PDE.

[71]  Yan Guo,et al.  Spectral instability of characteristic boundary layer flows , 2014, 1406.3862.

[72]  L. Hörmander The Nash-Moser Theorem and Paradifferential Operators , 1990 .

[73]  J. Vanneste,et al.  Strong echo effect and nonlinear transient growth in shear flows , 1998 .

[74]  R. Levy,et al.  Role of Landau damping in crossed-field electron beams and inviscid shear flow , 1970 .

[75]  T. Lundgren,et al.  Strained spiral vortex model for turbulent fine structure , 1982 .

[76]  Emanuele Caglioti,et al.  Time Asymptotics for Solutions of Vlasov–Poisson Equation in a Circle , 1998 .

[77]  Gebhardt,et al.  Chaos transition despite linear stability. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[78]  Gunilla Kreiss,et al.  Bounds for the Threshold Amplitude for Plane Couette Flow , 2002, math/0302028.

[79]  N. Masmoudi,et al.  Inviscid damping and the asymptotic stability of planar shear flows in the 2D Euler equations , 2013, 1306.5028.

[80]  W. H. Reid,et al.  Hydrodynamic Stability: Contents , 2004 .

[81]  Y. Charles Li,et al.  A Resolution of the Sommerfeld Paradox , 2009, SIAM J. Math. Anal..

[82]  Takaaki Nishida,et al.  A note on a theorem of Nirenberg , 1977 .

[83]  C. Villani,et al.  On Landau damping , 2009, 0904.2760.

[84]  A. Bernoff,et al.  Transient anomalous diffusion in Poiseuille flow , 2001, Journal of Fluid Mechanics.