Dorsal unpaired median neurones in the insect central nervous system: towards a better understanding of the ionic mechanisms underlying spontaneous electrical activity.

The efferent dorsal unpaired median (DUM) neurones, which include octopaminergic neurones, are among the most intensively studied neurones in the insect central nervous system. They differ from other insect neurones in generating endogenous spontaneous overshooting action potentials. The second half of the 1980s is certain to be considered a turning point in the study of the ion channels underlying the electrical activity of DUM neurones. Recent advances made using the patch-clamp technique have stimulated an increasing interest in the understanding of the biophysical properties of both voltage-dependent and voltage-independent ion channels. Patch-clamp studies of DUM neurones in cell culture demonstrate that these neurones express a wide variety of ion channels. At least five different types of K(+) channel have been identified: inward rectifier, delayed rectifier and A-like channels as well as Ca(2+)- and Na(+)-activated K(+) channels. Moreover, besides voltage-dependent Na(+) and Ca(2+)-sensitive Cl(-) channels, DUM neurones also express four types of Ca(2+) channel distinguished on the basis of their kinetics, voltage range of activation and pharmacological profile. Finally, two distinct resting Ca(2+) and Na(+) channels have been shown to be involved in maintaining the membrane potential and in regulating the firing pattern. In this review, we have also attempted critically to evaluate these existing ion channels with regard to their specific functions in the generation of the different phases of the spontaneous electrical activity of the DUM neurone.

[1]  D. Chesnoy-Marchais Hyperpolarization-Activated Chloride Channels in Aplysia Neurons , 1990 .

[2]  H. Pape,et al.  Queer current and pacemaker: the hyperpolarization-activated cation current in neurons. , 1996, Annual review of physiology.

[3]  P. Mcgeer,et al.  Inhibition of rat brain tryptophan hydroxylase by 6-halotryptophans. , 1968, Life sciences.

[4]  D. Wicher,et al.  Ca2+ currents in cockroach neurones: properties and modulation by neurohormone D. , 1994, Neuroreport.

[5]  F. Grolleau,et al.  Transient Na+-activated K+ current in beating pacemaker-isolated adult insect neurosecretory cells (dum neurones) , 1994, Neuroscience Letters.

[6]  D. McCormick,et al.  H-Current Properties of a Neuronal and Network Pacemaker , 1998, Neuron.

[7]  P. Stevenson Colocalisation of taurine‐ with transmitter‐immunoreactivities in the nervous system of the migratory locust , 1999, The Journal of comparative neurology.

[8]  Washio Hiroshi,et al.  Morphological and physiological properties of the dorsal unpaired median neurons of the cockroach metathoracic ganglion , 1988 .

[9]  M. Geffard,et al.  Anatomy and targets of dorsal unpaired median neurones in the terminal abdominal ganglion of the male cockroach Periplaneta americana L. , 1996, The Journal of comparative neurology.

[10]  B. Rudy,et al.  Diversity and ubiquity of K channels , 1988, Neuroscience.

[11]  N. Spitzer,et al.  Role of calcium and protein kinase C in development of the delayed rectifier potassium current in xenopus spinal neurons , 1991, Neuron.

[12]  C. Malécot,et al.  Ionic Species Involved in the Electrical Activity of Single Adult Aminergic Neurones Isolated from the Sixth Abdominal Ganglion of the Cockroach Periplaneta Americana , 1989 .

[13]  Jan-Marino Ramirez,et al.  A Multifunctional Role for Octopamine in Locust Flight , 1993 .

[14]  D. Wicher,et al.  omega-Toxins affect Na+ currents in neurosecretory insect neurons. , 1998, Receptors & channels.

[15]  M. Stankiewicz,et al.  Bot IT2, a toxin paralytic to insects from the Buthus occitanus tunetanus venom modifying the activity of insect sodium channels , 1996 .

[16]  B. Lapied,et al.  Neurite regeneration of long-term cultured adult insect neurosecretory cells identified as DUM neurons. , 1993, Tissue & cell.

[17]  M. Siegler,et al.  Anatomy and physiology of spiking local and intersegmental interneurons in the median neuroblast lineage of the grasshopper , 1991, The Journal of comparative neurology.

[18]  R. Elsey,et al.  Stress and plasma corticosterone levels in the american alligator—relationships with stocking density and nesting success , 1990 .

[19]  G. A. Kerkut,et al.  Electrically excitable nerve cell bodies in the central ganglia of two insect species Periplaneta americana and Schistocerca gregaria. Investigation of cell geometry and morphology by intracellular dye injection , 1971 .

[20]  Braunig,et al.  Locust dorsal unpaired median (DUM) neurones directly innervate and modulate hindleg proprioceptors , 1998, The Journal of experimental biology.

[21]  C. Stevens,et al.  Prediction of repetitive firing behaviour from voltage clamp data on an isolated neurone soma , 1971, The Journal of physiology.

[22]  K. Zinn,et al.  The grasshopper median neuroblast is a multipotent progenitor cell that generates glia and neurons in distinct temporal phases , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[23]  N. Spitzer,et al.  Spontaneous neuronal calcium spikes and waves during early differentiation , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[24]  M. Burrows The Neurobiology of an Insect Brain , 1996 .

[25]  C. Goodman,et al.  The mature electrical properties of identified neurones in grasshopper embryos , 1981, The Journal of physiology.

[26]  D. Sattelle,et al.  Cockroach giant interneurones stained by cobalt-backfilling of dissected axons. , 1980, The Journal of experimental biology.

[27]  K. Pearson,et al.  Electrical excitability: a spectrum of properties in the progeny of a single embryonic neuroblast. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[28]  Graham Hoyle,et al.  Dorsal unpaired median insect neurons make neurosecretory endings on skeletal muscle , 1974 .

[29]  A. Watson The dorsal unpaired median neurons of the locust metathoracic ganglion: neuronal structure and diversity, and synapse distribution , 1984, Journal of neurocytology.

[30]  M. V. Thomas Voltage‐clamp analysis of a calcium‐mediated potassium conductance in cockroach (Periplaneta americana) central neurones. , 1984, The Journal of physiology.

[31]  R. Keynes The ionic channels in excitable membranes. , 1975, Ciba Foundation symposium.

[32]  D. Wicher Ca 2 / Currents in Central Insect Neurons : Electrophysiological and Pharmacological Properties , 1997 .

[33]  F. Grolleau,et al.  Separation and identification of multiple potassium currents regulating the pacemaker activity of insect neurosecretory cells (DUM neurons). , 1995, Journal of Neurophysiology.

[34]  P. Evans,et al.  Distribution of myomodulin‐like immunoreactivity in the adult and developing ventral nervous system of the locust Schistocerca gregaria , 1994, The Journal of comparative neurology.

[35]  C. Malécot,et al.  Patch-clamp Study of the Properties of the Sodium Current in Cockroach Single Isolated Adult Aminergic Neurones , 1990 .

[36]  M. Garcia-Calvo,et al.  Use of toxins to study potassium channels , 1991, Journal of bioenergetics and biomembranes.

[37]  N. Lane,et al.  The Blood‐Brain Interface in Invertebrates a , 1986, Annals of the New York Academy of Sciences.

[38]  M. Stankiewicz,et al.  [Anti-insect scorpion toxins: historical account, activities and prospects]. , 1998, Comptes rendus des seances de la Societe de biologie et de ses filiales.

[39]  G. A. Kerkut,et al.  Electrical activity in insect nerve cell bodies , 1968 .

[40]  E. Ball,et al.  The grasshopper, Drosophila and neuronal homology (advantages of the insect nervous system for the neuroscientist) , 1993, Progress in Neurobiology.

[41]  D. Faber,et al.  Axotomy-induced alterations in the electrophysiological characteristics of neurons , 1990, Progress in Neurobiology.

[42]  D. Triggle The pharmacology of ion channels: with particular reference to voltage-gated Ca2+ channels. , 1999, European journal of pharmacology.

[43]  T. Roeder,et al.  Octopamine in invertebrates , 1999, Progress in Neurobiology.

[44]  C. Goodman,et al.  The development of electrical properties of identified neurones in grasshopper embryos. , 1981, Journal of Physiology.

[45]  J. Ramirez,et al.  A subpopulation of dorsal unpaired median neurons in the blood‐feeding insect Rhodnius prolixus displays serotonin‐like immunoreactivity , 1989, The Journal of comparative neurology.

[46]  H. Rochat,et al.  Biophysical properties of scorpion α‐toxin‐sensitive background sodium channel contributing to the pacemaker activity in insect neurosecretory cells (DUM neurons) , 1999, The European journal of neuroscience.

[47]  Evans,et al.  The characterization of presynaptic octopamine receptors modulating octopamine release from an identified neurone in the locust , 1984, The Journal of experimental biology.

[48]  S. Buckingham,et al.  Nicotine increases [Ca2+]i and regulates electrical activity in insect neurosecretory cells (DUM neurons) via an acetylcholine receptor with ‘mixed’ nicotinic-muscarinic pharmacology , 1996, Neuroscience Letters.

[49]  Some effects of octopamine, proctolin and serotonin on dorsal unpaired median neurones of cockroach (Periplaneta americana) thoracic ganglia , 1992 .

[50]  G. A. Kerkut,et al.  Electrophysiological studies on the axon pathways of specified nerve cells in the central ganglia of two insect species, Periplaneta americana and Schistocerca gregaria , 1972 .

[51]  B. Lapied,et al.  Hyperpolarization-activated inward potassium and calcium-sensitive chloride currents in beating pacemaker insect neurosecretory cells (dorsal unpaired median neurons) , 1999, Neuroscience.

[52]  P. Stevenson,et al.  Localization of octopaminergic neurones in insects. , 1995, Comparative biochemistry and physiology. Part A, Physiology.

[53]  D. Wicher,et al.  Neurohormone D increases the intracellular Ca2+ level in cockroach neurones through a Cd2+-sensitive Ca2+ influx , 1993, Neuroscience Letters.

[54]  D. Wicher,et al.  Octopamine modulates ionic currents and spiking in dorsal unpaired median (DUM) neurons. , 1997, Neuroreport.

[55]  M. Geffard,et al.  Neuritic GABAergic synapses in insect neurosecretory cells , 1994, Neuroscience Research.

[56]  C. Goodman Embryonic Development of Identified Neurons in the Grasshopper , 1982 .

[57]  S. Dryer Na+-activated K+ channels: a new family of large-conductance ion channels , 1994, Trends in Neurosciences.

[58]  W. J. Heitler,et al.  Multiple Sites of Spike Initiation in a Bifurcating Locust Neurone , 1978 .

[59]  P. Kostyuk Low-voltage activated calcium channels: achievements and problems , 1999, Neuroscience.

[60]  M. Burrows,et al.  Neural mechanisms underlying behavior in the locust Schistocerca gregaria. II. Integrative activity in metathoracic neurons. , 1973, Journal of neurobiology.

[61]  Activation of DUM cell interneurons by ventral giant interneurons in the cockroach, Periplaneta americana. , 1988, Journal of neurobiology.

[62]  H. L. Corronc,et al.  Sensitive nicotinic and mixed nicotinic-muscarinic receptors in insect neurosecretory cells , 1990, Brain Research.

[63]  Peter J. S. Smith,et al.  Long-term culture of fully differentiated adult insect neurons , 1996, Journal of Neuroscience Methods.

[64]  P. Bräunig Structure of identified neurons innervating the lateral cardiac nerve cords in the migratory locust, Locusta migratoria migratorioides (Reiche and Fairmaire) (Orthoptera, Acrididae) , 1999 .

[65]  H. Penzlin,et al.  A new specific antibody reveals octopamine‐like immunoreactivity in cockroach ventral nerve cord , 1992, The Journal of comparative neurology.

[66]  J. Connor Neural pacemakers and rhythmicity. , 1985, Annual review of physiology.

[67]  L F Abbott,et al.  Decoding neuronal firing and modelling neural networks , 1994, Quarterly Reviews of Biophysics.

[68]  M. Berry,et al.  Development of astroglial cells in the proliferative matrices, the granule cell layer, and the hippocampal fissure of the hamster dentate gyrus , 1992, The Journal of comparative neurology.

[69]  M. Burrows,et al.  Neural mechanisms underlying behavior in the locust Schistocerca gregaria. I. Physiology of identified motorneurons in the metathoracic ganglion. , 1973, Journal of neurobiology.

[70]  A. Constanti,et al.  Fast inward‐rectifying current accounts for anomalous rectification in olfactory cortex neurones. , 1983, The Journal of physiology.

[71]  F. Grolleau,et al.  Two distinct low-voltage-activated Ca2+ currents contribute to the pacemaker mechanism in cockroach dorsal unpaired median neurons. , 1996, Journal of neurophysiology.

[72]  P. Evans,et al.  Biogenic amines in the nervous system of the cockroach, Periplaneta americana: association of octopamine with mushroom bodies and dorsal unpaired median (DUM) neurones , 1979 .

[73]  G. Hoyle,et al.  Physiological characteristics and reflex activation of DUM (octopaminergic) neurons of locust metathoracic ganglion. , 1978, Journal of neurobiology.

[74]  W. J. Heitler,et al.  Electrical properties of insect neurones with spiking and non-spiking somata: normal, axotomized, and colchicine-treated neurones. , 1979, The Journal of experimental biology.

[75]  E A Howes,et al.  Long-term growth in vitro of isolated, fully differentiated neurones from the central nervous system of an adult insect. , 1991, The Journal of experimental biology.

[76]  V. Bindokas,et al.  omega-Aga-I: a presynaptic calcium channel antagonist from venom of the funnel web spider, Agelenopsis aperta. , 1989, Journal of neurobiology.

[77]  C. Goodman,et al.  Embryonic development of identified neurones: differentiation from neuroblast to neurone , 1979, Nature.

[78]  A. Elia,et al.  Some morphological and physiological characteristics of an identifiable dorsal unpaired median neurone in the metathoracic ganglion of the cockroach, Periplaneta americana (L.) , 1990 .

[79]  M. Pelhate,et al.  Outward chloride/potassium co-transport in insect neurosecretory cells (DUM neurones). , 1995, Comparative biochemistry and physiology. Part A, Physiology.

[80]  A. S. French,et al.  Na+-Dependent neuritic spikes initiate Ca2+-dependent somatic plateau action potentials in insect dorsal paired median neurons. , 1998, Journal of neurophysiology.

[81]  D. Wicher,et al.  Ca2+ currents in central insect neurons: electrophysiological and pharmacological properties. , 1997, Journal of neurophysiology.