Propofol attenuates responses of the auditory cortex to acoustic stimulation in a dose‐dependent manner: A FMRI study

Background:  Functional magnetic resonance imaging (fMRI) using blood‐oxygen‐level‐dependent (BOLD) contrasts is a common method for studying sensory or cognitive brain functions. The aim of the present study was to assess the effect of the intravenous anaesthetic propofol on auditory‐induced brain activation using BOLD contrast fMRI.

[1]  C. Doré,et al.  Effect of propofol on the auditory evoked response and oesophageal contractility. , 1989, British journal of anaesthesia.

[2]  J. Hilgenberg Intraoperative awareness during high-dose fentanyl--oxygen anesthesia. , 1981, Anesthesiology.

[3]  M. Torrens Co-Planar Stereotaxic Atlas of the Human Brain—3-Dimensional Proportional System: An Approach to Cerebral Imaging, J. Talairach, P. Tournoux. Georg Thieme Verlag, New York (1988), 122 pp., 130 figs. DM 268 , 1990 .

[4]  C Thornton,et al.  Evoked responses in anaesthesia. , 1998, British journal of anaesthesia.

[5]  N. Logothetis,et al.  Functional imaging of the monkey brain , 1999, Nature Neuroscience.

[6]  Alan C. Evans,et al.  Brain Mechanisms of Propofol-Induced Loss of Consciousness in Humans: a Positron Emission Tomographic Study , 1999, The Journal of Neuroscience.

[7]  B. Bernal,et al.  Brain activation in sedated children: auditory and visual functional MR imaging. , 2001, Radiology.

[8]  Harald Treuer,et al.  Optimized distortion correction of epi-based statistical parametrical maps for stereotactic neurosurgery. , 2004, Magnetic resonance imaging.

[9]  L Goldmann,et al.  Information-Processing under General Anaesthesia: A Review , 1988, Journal of the Royal Society of Medicine.

[10]  M. M. Souweidanea,et al.  Brain Mapping in Sedated Infants and Young Children with Passive-Functional Magnetic Resonance Imaging , 1999 .

[11]  Stephen M. Rao,et al.  Human Brain Language Areas Identified by Functional Magnetic Resonance Imaging , 1997, The Journal of Neuroscience.

[12]  R. Zatorre Functional specialization of human auditory cortex for musical processing. , 1998, Brain : a journal of neurology.

[13]  T. Münte,et al.  Receptive amusia: evidence for cross-hemispheric neural networks underlying music processing strategies. , 2000, Brain : a journal of neurology.

[14]  E Pöppel,et al.  Midlatency auditory evoked potentials and purposeful movements after thiopentone bolus injection , 1994, Anaesthesia.

[15]  E Pöppel,et al.  Midlatency Auditory Evoked Potentials and Explicit and Implicit Memory in Patients Undergoing Cardiac Surgery , 1994, Anesthesiology.

[16]  Tomio Inoue,et al.  Neural Mechanism of Propofol Anesthesia in Severe Depression: A Positron Emission Tomographic Study , 2003, Anesthesiology.

[17]  Susan Pockett,et al.  Anesthesia and the Electrophysiology of Auditory Consciousness , 1999, Consciousness and Cognition.

[18]  I. Berry,et al.  Functional magnetic resonance imaging may avoid misdiagnosis of cochleovestibular nerve aplasia in congenital deafness. , 2000, The American journal of otology.

[19]  C J Fiebach,et al.  Sequential effects of propofol on functional brain activation induced by auditory language processing: an event-related functional magnetic resonance imaging study. , 2004, British journal of anaesthesia.

[20]  G. Plourde Auditory evoked potentials. , 2006, Best practice & research. Clinical anaesthesiology.

[21]  S. Erulkar,et al.  Single-unit activity in the auditory cortex of the cat. , 1954, The Journal of physiology.

[22]  V. Sturm,et al.  Intraoperative functional MRI as a new approach to monitor deep brain stimulation in Parkinson's disease , 2004, European Radiology.

[23]  E Kochs,et al.  The effects of propofol on cerebral and spinal cord blood flow in rats. , 1993, Anesthesia and analgesia.

[24]  T. Kazama,et al.  Awakening Propofol Concentration with and without Blood‐Effect Site Equilibration after Short‐term and Long‐term Administration of Propofol and Fentanyl Anesthesia , 1998, Anesthesiology.

[25]  J. Drummond,et al.  Monitoring depth of anesthesia: with emphasis on the application of the bispectral index and the middle latency auditory evoked response to the prevention of recall. , 2000, Anesthesiology.

[26]  R. Patterson,et al.  The Processing of Temporal Pitch and Melody Information in Auditory Cortex , 2002, Neuron.

[27]  E. Kochs,et al.  S(+)-ketamine/propofol maintain dynamic cerebrovascular autoregulation in humans , 2001, Canadian journal of anaesthesia = Journal canadien d'anesthesie.

[28]  E. Altenmüller,et al.  How Many Music Centers Are in the Brain? , 2001, Annals of the New York Academy of Sciences.

[29]  Alan C. Evans,et al.  Neural mechanisms underlying melodic perception and memory for pitch , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[30]  Erulkar Sd,et al.  Single-unit activity in the auditory cortex of the cat. , 1954 .

[31]  T. Griffiths,et al.  The planum temporale as a computational hub , 2002, Trends in Neurosciences.

[32]  J. Y. Kao,et al.  Cerebral Metabolism during Propofol Anesthesia in Humans Studied with Positron Emission Tomography , 1995, Anesthesiology.

[33]  J. Hirsch,et al.  Brain Mapping in Sedated Infants and Young Children with Passive-Functional Magnetic Resonance Imaging , 1999, Pediatric Neurosurgery.

[34]  Ernst Fernando Lopes Da Silva Niedermeyer,et al.  Electroencephalography, basic principles, clinical applications, and related fields , 1982 .

[35]  I. Peretz,et al.  Contribution of different cortical areas in the temporal lobes to music processing. , 1998, Brain : a journal of neurology.