A Littlewood-Richardson rule for dual stable Grothendieck polynomials
暂无分享,去创建一个
[1] Cristian Lenart,et al. Combinatorial Aspects of the K-Theory of Grassmannians , 2000 .
[2] Gaku Liu,et al. Refined Dual Stable Grothendieck Polynomials and Generalized Bender-Knuth Involutions , 2015, Electron. J. Comb..
[3] Jeffrey B. Remmel,et al. A simple proof of the Littlewood-Richardson rule and applications , 1998, Discret. Math..
[4] Thomas Lam,et al. Combinatorial Hopf algebras and K-homology of Grassmanians , 2007, 0705.2189.
[5] W. Fulton. Young Tableaux: With Applications to Representation Theory and Geometry , 1996 .
[6] Sergey Fomin,et al. The Yang-Baxter equation, symmetric functions, and Schubert polynomials , 1996, Discret. Math..
[7] Donald E. Knuth,et al. PERMUTATIONS, MATRICES, AND GENERALIZED YOUNG TABLEAUX , 1970 .
[8] Peter Littelmann,et al. A Littlewood-Richardson rule for symmetrizable Kac-Moody algebras , 1994 .
[9] Jennifer Morse,et al. Combinatorial Expansions in K-Theoretic Bases , 2011, Electron. J. Comb..
[10] John R. Stembridge,et al. A local characterization of simply-laced crystals , 2003 .
[11] Anders Skovsted Buch. A Littlewood-Richardson rule for theK-theory of Grassmannians , 2000 .