Dynamics of a model of Toxoplasmosis disease in human and cat populations

A mathematical model for the transmission of Toxoplasmosis disease in human and cat populations is proposed and analyzed. We explore the dynamics of the Toxoplasmosis disease at the population level using an epidemiological type model. Discussion of the basic concepts of the Toxoplasmosis transmission dynamics on human and cat populations are presented. The cats in this model plays a role of infectious agents and host of the protozoan Toxoplasma Gondii parasite. Qualitative dynamics of the model is determined by the basic reproduction number, R"0. If the threshold parameter R"0 1 the convergence is to the endemic equilibrium point. Numerical simulations of the model illustrates several different dynamics depending on the threshold parameter R"0 and show the importance of this parameter.

[1]  Bruce Hannon,et al.  A computer simulation of the prevention of the transmission of Toxoplasma gondii on swine farms using a feline T. gondii vaccine. , 2002, Preventive veterinary medicine.

[2]  L. Esteva,et al.  Influence of vertical and mechanical transmission on the dynamics of dengue disease. , 2000, Mathematical biosciences.

[3]  Herbert W. Hethcote,et al.  Dynamic models of infectious diseases as regulators of population sizes , 1992, Journal of mathematical biology.

[4]  Rafael J. Villanueva,et al.  Mathematical modeling of Toxoplasmosis disease in varying size populations , 2008, Comput. Math. Appl..

[5]  Armand Denis,et al.  Cats of the World , 1964 .

[6]  J. Dubey,et al.  A review of toxoplasmosis in pigs. , 1986, Veterinary parasitology.

[7]  Yilei Tang,et al.  Global dynamics of an epidemic model with an unspecified degree , 2007, Comput. Math. Appl..

[8]  J. Boothroyd,et al.  Population biology of Toxoplasma gondii and its relevance to human infection: do different strains cause different disease? , 2002, Current opinion in microbiology.

[9]  Herbert W. Hethcote,et al.  The Mathematics of Infectious Diseases , 2000, SIAM Rev..

[10]  James D. Murray Mathematical Biology: I. An Introduction , 2007 .

[11]  J. Dubey,et al.  A review of toxoplasmosis in cattle. , 1986, Veterinary parasitology.

[12]  J. K. Frenkel,et al.  Human toxoplasmosis and cat contact in Costa Rica. , 1980, The American journal of tropical medicine and hygiene.

[13]  M. Sunquist,et al.  Wild Cats of the World , 2002 .

[14]  David S. Lindsay,et al.  Feline Clinical Parasitology , 2001 .

[15]  L. David Sibley,et al.  Virulent strains of Toxoplasma gondii comprise a single clonal lineage , 1992, Nature.

[16]  R C Jung,et al.  Clinical parasitology 9th edition , 1984 .

[17]  J. Dubey,et al.  Duration of immunity to shedding of Toxoplasma gondii oocysts by cats. , 1995, The Journal of parasitology.

[18]  J. Montoya,et al.  Prevalence of infection with Toxoplasma gondii among pregnant women in Cali, Colombia, South America. , 2008, The American journal of tropical medicine and hygiene.

[19]  F. Brauer,et al.  Mathematical Models in Population Biology and Epidemiology , 2001 .

[20]  J. Gómez‐Marín,et al.  A maternal screening program for congenital toxoplasmosis in Quindio, Colombia and application of mathematical models to estimate incidences using age-stratified data. , 1997, The American journal of tropical medicine and hygiene.

[21]  Liliana Reyes-Lizano,et al.  Trasmisión de Toxoplasma gondii en Costa Rica: Un concepto actualizado , 2001 .

[22]  Carlos Castillo-Chavez,et al.  Diseases with chronic stage in a population with varying size. , 2003, Mathematical biosciences.

[23]  N. Rashevsky,et al.  Mathematical biology , 1961, Connecticut medicine.

[24]  L. Esteva,et al.  Analysis of a dengue disease transmission model. , 1998, Mathematical biosciences.