SQUID Activities in Europe, Part I: Devices

We present an overview of SQUID research and development in Europe. The tutorial information and historical background are kept at a minimum; we also mention only briefly the theoretical contributions and more fundamental experiments. Rather, we concentrate on practical SQUIDs and SQUID readout and highlight selected recent advances. Today, the SQUID itself is a rather mature device. Current research and development work concentrates mostly on satisfying needs imposed by novel applications, which often require more complicated SQUID circuits, including SQUID serial arrays and auxiliary devices on one chip. In closing, we mention the European foundry and current industrial capabilities. Applications are covered by Part II of this overview to be published separately.

[1]  C. Granata,et al.  Integrated dc SQUID Magnetometers in Multichannel Systems for Biomagnetic Imaging , 2007, EUROCON 2007 - The International Conference on "Computer as a Tool".

[2]  John Clarke,et al.  dc SQUID: Noise and optimization , 1977 .

[3]  H. Hoenig Squid arrays for biomagnetic diagnosis , 1991 .

[4]  John Lambe,et al.  QUANTUM INTERFERENCE EFFECTS IN JOSEPHSON TUNNELING , 1964 .

[5]  Pascal Febvre,et al.  Experimental study of a hybrid single flux quantum digital superconducting quantum interference device magnetometer , 2008 .

[6]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[7]  Boris Chesca,et al.  Experimental study of amplitude–frequency characteristics of high-transition-temperature radio frequency superconducting quantum interference devices , 2000 .

[8]  John Clarke,et al.  RADIO-FREQUENCY AMPLIFIER BASED ON A NIOBIUM DC SUPERCONDUCTING QUANTUM INTERFERENCE DEVICE WITH MICROSTRIP INPUT COUPLING , 1998 .

[10]  Paul Seidel,et al.  Thin‐film dc SQUID gradiometer using a single YBa2Cu3O7−x layer , 1994 .

[11]  V. Semenov,et al.  Relaxation-oscillation-driven DC SQUIDs , 1989 .

[12]  J. Oppenlaender,et al.  N o n − Φ 0 − p e r i o d i c macroscopic quantum interference in one-dimensional parallel Josephson junction arrays with unconventional grating structure , 2000 .

[13]  Volkmar Schultze,et al.  Highly balanced single-layer high-temperature superconductor SQUID gradiometer freely movable within the Earth's magnetic field , 2003 .

[14]  H. Seppä,et al.  DC-SQUID Electronics Based on Adaptive Noise Cancellation and a High Open-Loop Gain Controller , 1992 .

[15]  C. Carr,et al.  Highly balanced long-baseline single-layer high-Tc superconducting quantum interference device gradiometer , 1999 .

[16]  Tapani Ryhänen,et al.  Effect of parasitic capacitance and inductance on the dynamics and noise of dc superconducting quantum interference devices , 1992 .

[17]  C. Carr,et al.  First-order high-T/sub c/ single-layer gradiometers: Parasitic effective area compensation and system balance , 2001 .

[18]  D. Drung,et al.  A planar YBa2Cu3O7 gradiometer at 77 K , 1992 .

[19]  Horst Rogalla,et al.  (Double) relaxation oscillation SQUIDs with high flux‐to‐voltage transfer: Simulations and experiments , 1994 .

[20]  R. Leoni,et al.  An absolute magnetometer based on dc Superconducting QUantum Interference Devices , 1997 .

[21]  C. Heiden,et al.  Planar microwave biased RF-SQUIDs in niobium technology , 1992 .

[22]  G. Hayward,et al.  SQUID GRADIOMETRIC DETECTION OF DEFECTS IN FERROMAGNETIC STRUCTURES , 1986 .

[23]  Michael Siegel,et al.  Current distribution simulation for superconducting multi-layered structures , 2003 .

[24]  H. Seppa,et al.  A coupled DC SQUID with low 1/f noise , 1993, IEEE Transactions on Applied Superconductivity.

[25]  J. Knuutila,et al.  Effects on DC SQUID characteristics of damping of input coil resonances , 1987 .

[26]  J. Oppenlaender,et al.  Superconducting multiple loop quantum interferometers , 2001 .

[27]  Mark B. Ketchen,et al.  Planar coupling scheme for ultra low noise DC SQUIDs , 1981 .

[28]  J. Oppenlaender,et al.  Nonperiodic flux to voltage conversion of series arrays of dc superconducting quantum interference devices , 2001 .

[29]  Dietmar Drung,et al.  Low-noise ultra-high-speed dc SQUID readout electronics , 2006 .

[30]  J. Beyer,et al.  Novel SQUID Current Sensors With High Linearity at High Frequencies , 2009, IEEE Transactions on Applied Superconductivity.

[31]  H. Meyer,et al.  Improved high-Tc superconducting quantum interference filters for sensitive magnetometry , 2003 .

[32]  P. Carelli,et al.  Low‐noise tunnel junction dc SQUID’s , 1981 .

[33]  D. Dimos,et al.  Superconducting transport properties of grain boundaries in YBa2Cu3O7 bicrystals. , 1990, Physical review. B, Condensed matter.

[34]  M. Kiviranta,et al.  DC-SQUID electronics based on the noise cancellation scheme , 1995, IEEE Transactions on Applied Superconductivity.

[35]  P. Caputo,et al.  High-performance magnetic field sensor based on superconducting quantum interference filters , 2004 .

[36]  John Clarke,et al.  Superconducting quantum interference device as a near-quantum-limited amplifier at 0.5 GHz , 2001 .

[37]  J. Kurkijaervi,et al.  INTRINSIC FLUCTUATIONS IN A SUPERCONDUCTING RING CLOSED WITH A JOSEPHSON JUNCTION. , 1972 .

[38]  Dc SQUID based on unshunted Josephson junctions: experimental results , 1995, IEEE Transactions on Applied Superconductivity.

[39]  Imaging spontaneous currents in superconducting arrays of π-junctions , 2007, 0708.0230.

[40]  J. E. Zimmerman,et al.  QUANTUM STATES AND TRANSITIONS IN WEAKLY CONNECTED SUPERCONDUCTING RINGS. , 1967 .

[41]  B. Chesca Analytical Theory of DC SQUIDS Operating in the Presence of Thermal Fluctuations , 1998 .

[42]  John Clarke,et al.  DC SQUIDs as radiofrequency amplifiers , 1985 .

[43]  Dietmar Drung,et al.  Low‐noise high‐speed dc superconducting quantum interference device magnetometer with simplified feedback electronics , 1990 .

[44]  D. Drung,et al.  Integrated DC SQUID magnetometer with high dV/dB , 1991 .

[45]  Antti Ahonen,et al.  DC-SQUID electronics based on adaptive positive feedback: experiments , 1991 .

[46]  J. Clarke,et al.  Superconducting quantum interference device amplifiers at gigahertz frequencies , 2003 .

[47]  O. Mukhanov,et al.  High Linearity SQIF-Like Josephson-Junction Structures , 2009, IEEE Transactions on Applied Superconductivity.

[48]  Willi Zander,et al.  Substrate resonator for HTS rf SQUID operation , 2002 .

[49]  P. Gutmann D.C. SQUID with high energy resolution , 1979 .

[50]  J. E. Zimmerman,et al.  Macroscopic Quantum Interference Effects through Superconducting Point Contacts , 1966 .

[51]  Volkmar Schultze,et al.  High-T/sub c/ superconducting quantum interference filters for sensitive magnetometers , 2003 .

[52]  K. Likharev,et al.  Dynamics of Josephson Junctions and Circuits , 1986 .

[53]  Influence of the signal coil on DC-SQUID dynamics , 1987 .

[54]  E. Il'ichev,et al.  Investigation of thin film DC SQUID gradiometer using a single YBCO layer , 1995, IEEE Transactions on Applied Superconductivity.

[55]  J. Oppenlaender,et al.  Highly sensitive magnetometers for absolute magnetic field measurements based on quantum interference filters , 2002 .

[56]  C. Heiden,et al.  Simple DC-SQUID system based on a frequency modulated relaxation oscillator , 1989 .

[57]  J. Clarke,et al.  A superconducting galvanometer employing Josephson tunnelling , 1966 .

[58]  J. E. Zimmerman,et al.  Sensitivity Enhancement of Superconducting Quantum Interference Devices through the Use of Fractional‐Turn Loops , 1971 .

[59]  D. Drung,et al.  Highly Sensitive and Easy-to-Use SQUID Sensors , 2007, IEEE Transactions on Applied Superconductivity.

[60]  M. Kiviranta Use of SiGe bipolar transistors for cryogenic readout of SQUIDs , 2006 .

[61]  Frank L. Vernon,et al.  Relaxation Oscillations in Josephson Junctions , 1968 .

[62]  R. Stolz,et al.  LTS SQUID sensor with a new configuration , 1999 .

[63]  H Koch,et al.  An integrated DC SQUID magnetometer with variable additional positive feedback , 1994 .

[64]  J. Rowell,et al.  Modification of tunneling barriers on Nb by a few monolayers of Al , 1981 .

[65]  Boris Chesca,et al.  Theory of RF SQUIDs Operating in the Presence of Large Thermal Fluctuations , 1998 .

[66]  R. Humphreys Vortices in HTS junctions and SQUIDs , 1999, IEEE Transactions on Applied Superconductivity.

[67]  H. Meyer,et al.  How to puzzle out a good high-Tc superconducting quantum interference filter , 2006 .

[68]  J. Clarke,et al.  A Numerical Treatment of the rf SQUID: I. General Properties and Noise Energy , 2007, cond-mat/0701718.

[69]  Dietmar Drung,et al.  High-Tc and low-Tc dc SQUID electronics , 2003 .

[70]  Paul Seidel,et al.  Planar gradiometers with high- DC SQUIDs for non-destructive testing , 1998 .

[71]  L. Parkkonen,et al.  122-channel squid instrument for investigating the magnetic signals from the human brain , 1993 .

[72]  Risto J. Ilmoniemi,et al.  SQUID magnetometers for low-frequency applications , 1989 .

[73]  G. Donaldson,et al.  Observation of quantum interference effects and SQUID operation in a bulk sample of YBa2Cu3Oy at 77 and 4.2 K , 1987 .

[74]  M. Blamire,et al.  Improvement of high T/sub c/ SQUID performance using an integrated resistor , 1999, IEEE Transactions on Applied Superconductivity.

[75]  Matti Kajola,et al.  Design, optimization, and construction of a dc SQUID with complete flux transformer circuits , 1988 .

[77]  Alex I. Braginski,et al.  The SQUID handbook , 2006 .

[78]  R. Leoni,et al.  Reliable low noise DC-SQUID , 1989 .

[79]  Mikko Kiviranta,et al.  SQUID linearization by current-sampling feedback , 2008 .

[80]  Michael Faley,et al.  Low noise HTS dc-SQUID flip-chip magnetometers and gradiometers , 2001 .

[81]  Yasutake Ohishi,et al.  Low-Noise an , 1996 .