Optimal multilevel matrix algebra operators

We study the optimal Frobenius operator in a general matrix vector space and in particular in the multilevel trigonometric matrix vector spaces, by emphasizing both the algebraic and geometric properties. These general results are used to extend the Korovkin matrix theory for the approximation of block Toeplitz matrices via trigonometric vector spaces. The abstract theory is then applied to the analysis of the approximation properties of several sine and cosine based vector spaces. Few numerical experiments are performed to give evidence of the theoretical results.

[1]  Stefano Serra Capizzano,et al.  A unifying approach to abstract matrix algebra preconditioning , 1999, Numerische Mathematik.

[2]  U. Grenander,et al.  Statistical analysis of stationary time series , 1958 .

[3]  Raymond H. Chan,et al.  Cosine transform based preconditioners for total variation minimization problems in image processing , 1995 .

[4]  U. Grenander,et al.  Toeplitz Forms And Their Applications , 1958 .

[5]  T. Kailath,et al.  Displacement structure approach to discrete-trigonometric-transform based preconditioners of G.Strang type and of T.Chan type , 1996 .

[6]  Stefano Serra Capizzano,et al.  Toeplitz Preconditioners Constructed from Linear Approximation Processes , 1999, SIAM J. Matrix Anal. Appl..

[7]  Alan V. Oppenheim,et al.  Applications of digital signal processing , 1978 .

[8]  Eugene E. Tyrtyshnikov,et al.  Optimal and Superoptimal Circulant Preconditioners , 1992, SIAM J. Matrix Anal. Appl..

[9]  Stefano Serra Capizzano,et al.  The rate of convergence of Toeplitz based PCG methods for second order nonlinear boundary value problems , 1999, Numerische Mathematik.

[10]  Eugene E. Tyrtyshnikov,et al.  Multilevel Toeplitz matrices and approximation by matrix algebras , 1998, Optics & Photonics.

[11]  Paolo Tilli,et al.  A note on the spectral distribution of toeplitz matrices , 1998 .

[12]  J. Nagy,et al.  Restoration of atmospherically blurred images by symmetric indefinite conjugate gradient techniques , 1996 .

[13]  Dario Bini,et al.  Parallel Solution of Certain Toeplitz Linear Systems , 1984, SIAM J. Comput..

[14]  Stefano Serra Capizzano,et al.  Any Circulant-Like Preconditioner for Multilevel Matrices Is Not Superlinear , 2000, SIAM J. Matrix Anal. Appl..

[15]  I. Gohberg,et al.  Convolution Equations and Projection Methods for Their Solution , 1974 .

[16]  Dario Bini,et al.  SPECTRAL AND COMPUTATIONAL PROPERTIES OF BAND SYMMETRIC TOEPLITZ MATRICES , 1983 .

[17]  Raymond H. Chan,et al.  Fast Band-Toeplitz Preconditioners for Hermitian Toeplitz Systems , 1994, SIAM J. Sci. Comput..

[18]  Thomas Huckle,et al.  Some Aspects of Circulant Preconditioners , 1993, SIAM J. Sci. Comput..

[19]  J. Nagy,et al.  Circulant Preconditioned Toeplitz Least Squares Iterations , 1994, SIAM J. Matrix Anal. Appl..

[20]  Raymond H. Chan,et al.  Circulant preconditioners for elliptic problems , 1992 .

[21]  Eugene E. Tyrtyshnikov,et al.  Spectra of multilevel toeplitz matrices: Advanced theory via simple matrix relationships , 1998 .

[22]  Eugene E. Tyrtyshnikov,et al.  Circulant preconditioners with unbounded inverses , 1995 .

[23]  Raymond H. Chan,et al.  Conjugate Gradient Methods for Toeplitz Systems , 1996, SIAM Rev..

[24]  Walter Gautschi,et al.  The condition of Vandermonde-like matrices involving orthogonal polynomials☆ , 1983 .

[25]  Stefano Serra Capizzano,et al.  Korovkin theorems and linear positive Gram matrix algebra approximations of Toeplitz matrices , 1998 .

[26]  Paola Favati,et al.  On a Matrix Algebra Related to the Discrete Hartley Transform , 1993, SIAM J. Matrix Anal. Appl..

[27]  R. Chan,et al.  The circulant operator in the banach algebra of matrices , 1991 .

[28]  Gian-Carlo Rota,et al.  Linear Operators and Approximation Theory. , 1965 .

[29]  Stefano Serra Capizzano,et al.  A Korovkin-Based Approximation of Multilevel Toeplitz Matrices (With Rectangular Unstructured Blocks) via Multilevel Trigonometric Matrix Spaces , 1999 .

[31]  Marcel F. Neuts,et al.  Structured Stochastic Matrices of M/G/1 Type and Their Applications , 1989 .

[32]  E. E. Tyrtyshnikov A unifying approach to some old and new theorems on distribution and clustering , 1996 .

[33]  L. Rubel,et al.  Constructive Function Theory , 1984 .

[34]  Radakovič The theory of approximation , 1932 .

[35]  Stefano Serra Capizzano,et al.  Optimal and Superoptimal Matrix Algebra Operators , 1997 .

[36]  Stefano Serra Capizzano,et al.  A Note on the Superoptimal Matrix Algebra Operators , 2002 .

[37]  I. P. Natanson Constructive function theory , 1964 .

[38]  Stefano Serra,et al.  A Korovkin-type theory for finite Toeplitz operators via matrix algebras , 1999 .