On the basic computational structure of gene regulatory networks.

Gene regulatory networks constitute the first layer of the cellular computation for cell adaptation and surveillance. In these webs, a set of causal relations is built up from thousands of interactions between transcription factors and their target genes. The large size of these webs and their entangled nature make it difficult to achieve a global view of their internal organisation. Here, this problem has been addressed through a comparative study of Escherichia coli, Bacillus subtilis and Saccharomyces cerevisiae gene regulatory networks. We extract the minimal core of causal relations, uncovering the hierarchical and modular organisation from a novel dynamical/causal perspective. Our results reveal a marked top-down hierarchy containing several small dynamical modules for E. coli and B. subtilis. Conversely, the yeast network displays a single but large dynamical module in the middle of a bow-tie structure. We found that these dynamical modules capture the relevant wiring among both common and organism-specific biological functions such as transcription initiation, metabolic control, signal transduction, response to stress, sporulation and cell cycle. Functional and topological results suggest that two fundamentally different forms of logic organisation may have evolved in bacteria and yeast.

[1]  A. Wilson,et al.  Hierarchical structures. , 1969, Science.

[2]  Bernard Harris,et al.  Graph theory and its applications , 1970 .

[3]  R. Thomas,et al.  Boolean formalization of genetic control circuits. , 1973, Journal of theoretical biology.

[4]  Stuart A. Kauffman,et al.  The origins of order , 1993 .

[5]  R. Rosen Life Itself: A Comprehensive Inquiry Into the Nature, Origin, and Fabrication of Life , 1991 .

[6]  D. Bray Protein molecules as computational elements in living cells , 1995, Nature.

[7]  Araceli M. Huerta,et al.  From specific gene regulation to genomic networks: a global analysis of transcriptional regulation in Escherichia coli. , 1998, BioEssays : news and reviews in molecular, cellular and developmental biology.

[8]  J. Hopfield,et al.  From molecular to modular cell biology , 1999, Nature.

[9]  김삼묘,et al.  “Bioinformatics” 특집을 내면서 , 2000 .

[10]  Andrei Z. Broder,et al.  Graph structure in the Web , 2000, Comput. Networks.

[11]  M. Bauer,et al.  Core percolation in random graphs: a critical phenomena analysis , 2001, cond-mat/0102011.

[12]  Julio Collado-Vides,et al.  RegulonDB (version 3.2): transcriptional regulation and operon organization in Escherichia coli K-12 , 2001, Nucleic Acids Res..

[13]  C. Harwood,et al.  Conference Review from Gene Regulation to Gene Function: Regulatory Networks in Bacillus Subtilis , 2001 .

[14]  S. Shen-Orr,et al.  Network motifs in the transcriptional regulation network of Escherichia coli , 2002, Nature Genetics.

[15]  Nicola J. Rinaldi,et al.  Transcriptional Regulatory Networks in Saccharomyces cerevisiae , 2002, Science.

[16]  A. Barabasi,et al.  Hierarchical Organization of Modularity in Metabolic Networks , 2002, Science.

[17]  Antoine Danchin,et al.  SubtiList: the reference database for the Bacillus subtilis genome , 2002, Nucleic Acids Res..

[18]  Alessandro Vespignani,et al.  Large-scale topological and dynamical properties of the Internet. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[19]  Paulien Hogeweg,et al.  Computing an organism: on the interface between informatic and dynamic processes. , 2002, Bio Systems.

[20]  Julian Lewis Autoinhibition with Transcriptional Delay A Simple Mechanism for the Zebrafish Somitogenesis Oscillator , 2003, Current Biology.

[21]  N. Monk Oscillatory Expression of Hes1, p53, and NF-κB Driven by Transcriptional Time Delays , 2003, Current Biology.

[22]  Albert-László Barabási,et al.  Aggregation of topological motifs in the Escherichia coli transcriptional regulatory network , 2004, BMC Bioinformatics.

[23]  Carsten Peterson,et al.  Random Boolean network models and the yeast transcriptional network , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[24]  A. Arkin,et al.  Motifs, modules and games in bacteria. , 2003, Current opinion in microbiology.

[25]  M. Gerstein,et al.  Structure and evolution of transcriptional regulatory networks. , 2004, Current opinion in structural biology.

[26]  M E J Newman,et al.  Fast algorithm for detecting community structure in networks. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[27]  Q. Ouyang,et al.  The yeast cell-cycle network is robustly designed. , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[28]  Cathy H. Wu,et al.  UniProt: the Universal Protein knowledgebase , 2004, Nucleic Acids Res..

[29]  A. G. de la Fuente,et al.  Quantifying Gene Networks with Regulatory Strengths , 2004, Molecular Biology Reports.

[30]  An-Ping Zeng,et al.  Hierarchical structure and modules in the Escherichia coli transcriptional regulatory network revealed by a new top-down approach , 2004, BMC Bioinformatics.

[31]  C. Espinosa-Soto,et al.  A Gene Regulatory Network Model for Cell-Fate Determination during Arabidopsis thaliana Flower Development That Is Robust and Recovers Experimental Gene Expression Profilesw⃞ , 2004, The Plant Cell Online.

[32]  Albert-László Barabási,et al.  Evolution of Networks: From Biological Nets to the Internet and WWW , 2004 .

[33]  Sergei Maslov,et al.  Hierarchy measures in complex networks. , 2003, Physical review letters.

[34]  M. Gerstein,et al.  Genomic analysis of regulatory network dynamics reveals large topological changes , 2004, Nature.

[35]  Z. N. Oltvai,et al.  Topological units of environmental signal processing in the transcriptional regulatory network of Escherichia coli , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[36]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[37]  J. Collado-Vides,et al.  Modular analysis of the transcriptional regulatory network of E. coli. , 2005, Trends in genetics : TIG.

[38]  Martin Kuiper,et al.  BiNGO: a Cytoscape plugin to assess overrepresentation of Gene Ontology categories in Biological Networks , 2005, Bioinform..

[39]  Peter D. Karp,et al.  EcoCyc: a comprehensive database resource for Escherichia coli , 2004, Nucleic Acids Res..

[40]  T. Vicsek,et al.  Uncovering the overlapping community structure of complex networks in nature and society , 2005, Nature.

[41]  B Bassetti,et al.  Logic backbone of a transcription network. , 2004, Physical review letters.

[42]  R. Albert Scale-free networks in cell biology , 2005, Journal of Cell Science.

[43]  Ricard V Solé,et al.  Topology, tinkering and evolution of the human transcription factor network , 2005, The FEBS journal.

[44]  Stefan Bornholdt,et al.  Less Is More in Modeling Large Genetic Networks , 2005, Science.

[45]  Ilya Shmulevich,et al.  Eukaryotic cells are dynamically ordered or critical but not chaotic. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[46]  L. Aravind,et al.  Comprehensive analysis of combinatorial regulation using the transcriptional regulatory network of yeast. , 2006, Journal of molecular biology.

[47]  M Madan Babu,et al.  Uncovering a hidden distributed architecture behind scale-free transcriptional regulatory networks. , 2006, Journal of molecular biology.

[48]  L Correale,et al.  Core percolation and onset of complexity in boolean networks. , 2004, Physical review letters.

[49]  M. Gerstein,et al.  Genomic analysis of the hierarchical structure of regulatory networks , 2006, Proceedings of the National Academy of Sciences.

[50]  G. Wagner,et al.  The road to modularity , 2007, Nature Reviews Genetics.

[51]  H. Rieger,et al.  Comparative study of the transcriptional regulatory networks of E. coli and yeast: structural characteristics leading to marginal dynamic stability. , 2006, Journal of theoretical biology.

[52]  Denis Thieffry,et al.  Dynamical roles of biological regulatory circuits , 2007, Briefings Bioinform..

[53]  Eric H Davidson,et al.  The regulatory genome and the computer. , 2007, Developmental biology.

[54]  S. Kauffman,et al.  Robustness and evolvability in genetic regulatory networks. , 2007, Journal of theoretical biology.

[55]  BMC Bioinformatics , 2005 .

[56]  M. Gerstein,et al.  Getting connected: analysis and principles of biological networks. , 2007, Genes & development.

[57]  Piotr Berman,et al.  On cycles in the transcription network of Saccharomyces cerevisiae , 2007, BMC Systems Biology.

[58]  O. Demin,et al.  The Edinburgh human metabolic network reconstruction and its functional analysis , 2007, Molecular systems biology.

[59]  M. Cosentino Lagomarsino,et al.  Hierarchy and feedback in the evolution of the Escherichia coli transcription network , 2007, Proceedings of the National Academy of Sciences.

[60]  J. Botto,et al.  The plant cell , 2007, Plant Molecular Biology Reporter.

[61]  Roger Guimerà,et al.  Extracting the hierarchical organization of complex systems , 2007, Proceedings of the National Academy of Sciences.

[62]  M. Newman,et al.  Hierarchical structure and the prediction of missing links in networks , 2008, Nature.

[63]  Julio Collado-Vides,et al.  RegulonDB (version 6.0): gene regulation model of Escherichia coli K-12 beyond transcription, active (experimental) annotated promoters and Textpresso navigation , 2007, Nucleic Acids Res..

[64]  Ian A. Swinburne,et al.  Intron delays and transcriptional timing during development. , 2008, Developmental cell.

[65]  Ricard V Solé,et al.  Distributed robustness in cellular networks: insights from synthetic evolved circuits , 2009, Journal of The Royal Society Interface.

[66]  Kara Dolinski,et al.  Gene Ontology annotations at SGD: new data sources and annotation methods , 2007, Nucleic Acids Res..

[67]  M. Ángeles Serrano,et al.  Structural Efficiency of Percolated Landscapes in Flow Networks , 2007, PloS one.

[68]  J. Collado-Vides,et al.  Functional architecture of Escherichia coli: new insights provided by a natural decomposition approach , 2008, Genome Biology.

[69]  Pamela A Silver,et al.  Intron length increases oscillatory periods of gene expression in animal cells. , 2008, Genes & development.

[70]  Kenta Nakai,et al.  DBTBS: a database of transcriptional regulation in Bacillus subtilis containing upstream intergenic conservation information , 2007, Nucleic Acids Res..

[71]  E. Raineri,et al.  Evolvability and hierarchy in rewired bacterial gene networks , 2008, Nature.

[72]  A. Emili,et al.  Systems-level approaches for identifying and analyzing genetic interaction networks in Escherichia coli and extensions to other prokaryotes. , 2009, Molecular bioSystems.

[73]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[74]  M. Cosentino Lagomarsino,et al.  A comparative evolutionary study of transcription networks. The global role of feedback and hierachical structures. , 2009, Molecular bioSystems.