Surveying points in the complex projective plane
暂无分享,去创建一个
[1] Markus Grassl,et al. Computing Equiangular Lines in Complex Space , 2008, MMICS.
[2] Steven T. Flammia. On SIC-POVMs in prime dimensions , 2006 .
[3] David A. Cox,et al. Ideals, Varieties, and Algorithms , 1997 .
[4] Bernd Sturmfels. What is a groebner basis , 2005 .
[5] A. J. Scott,et al. SIC-POVMs: A new computer study , 2009 .
[6] K. Nomizu,et al. Foundations of Differential Geometry , 1963 .
[7] M. Sentís. Quantum theory of open systems , 2002 .
[8] V. Arnold. Mathematical Methods of Classical Mechanics , 1974 .
[9] Lloyd R. Welch,et al. Lower bounds on the maximum cross correlation of signals (Corresp.) , 1974, IEEE Trans. Inf. Theory.
[10] Christopher A. Fuchs,et al. Group theoretic, lie algebraic and Jordan algebraic formulations of the sic existence problem , 2013, Quantum Inf. Comput..
[11] S. Sternberg,et al. Symplectic Techniques in Physics , 1984 .
[12] H. Weyl. The Theory Of Groups And Quantum Mechanics , 1931 .
[13] Joseph M. Renes,et al. Symmetric informationally complete quantum measurements , 2003, quant-ph/0310075.
[14] W. Thurston,et al. Three-Dimensional Geometry and Topology, Volume 1 , 1997, The Mathematical Gazette.
[15] Huangjun Zhu. SIC POVMs and Clifford groups in prime dimensions , 2010, 1003.3591.
[16] Abhay Ashtekar,et al. Geometrical Formulation of Quantum Mechanics , 1999 .
[17] A. J. Scott,et al. Symmetric informationally complete positive-operator-valued measures: A new computer study , 2010 .
[18] Akihiro Munemasa,et al. Equiangular lines in Euclidean spaces , 2014, J. Comb. Theory, Ser. A.
[19] W. Wootters. Quantum Measurements and Finite Geometry , 2004, quant-ph/0406032.
[20] Thomas Durt,et al. About mutually unbiased bases in even and odd prime power dimensions , 2005 .
[21] T. Kibble. Geometrization of quantum mechanics , 1979 .
[22] S. Salamon,et al. Twistor lines on cubic surfaces , 2012, 1212.2851.
[23] S. G. Hoggar. 64 Lines from a Quaternionic Polytope , 1998 .
[24] Ferenc Szöllősi,et al. All complex equiangular tight frames in dimension 3 , 2014 .
[25] G. B. Mathews,et al. Kummer's Quartic Surface , 1990 .
[26] Ferenc SzollHosi,et al. All complex equiangular tight frames in dimension 3 , 2014, 1402.6429.
[27] L. Ballentine,et al. Probabilistic and Statistical Aspects of Quantum Theory , 1982 .
[28] G. Mihaylov. Toric moment mappings and Riemannian structures , 2008, 0810.2799.
[29] David Marcus Appleby,et al. Galois automorphisms of a symmetric measurement , 2012, Quantum Inf. Comput..
[30] D. M. Appleby. Symmetric informationally complete–positive operator valued measures and the extended Clifford group , 2005 .
[31] David Marcus Appleby,et al. Linear dependencies in Weyl–Heisenberg orbits , 2013, Quantum Inf. Process..
[32] E. Wigner. Gruppentheorie und ihre Anwendung auf die Quantenmechanik der Atomspektren , 1931 .
[33] W. Thurston,et al. Three-Dimensional Geometry and Topology, Volume 1 , 1997, The Mathematical Gazette.
[34] G. Gibbons. Typical states and density matrices , 1992 .
[35] Amir Kalev,et al. Construction of all general symmetric informationally complete measurements , 2013, 1305.6545.
[36] Aharonov,et al. Geometry of quantum evolution. , 1990, Physical review letters.
[37] D. Mumford,et al. A rank 2 vector bundle on P4 with 15,000 symmetries , 1973 .
[38] E. Guth,et al. Gruppentheorie und ihre Anwendung auf die Quantenmechanik der Atomspektren , 1932 .
[39] Hsien-Chtjng Wang,et al. TWO-POINT HOMOGENEOUS SPACES , 1952 .
[40] G. Zauner,et al. QUANTUM DESIGNS: FOUNDATIONS OF A NONCOMMUTATIVE DESIGN THEORY , 2011 .
[41] L. Hughston,et al. Geometry of stochastic state vector reduction , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[42] D. Brody,et al. Geometric quantum mechanics , 1999, quant-ph/9906086.
[43] D. M. Appleby. SIC-POVMs and the Extended Clifford Group , 2004 .
[44] On Wigner's theorem , 2011, 1112.2133.
[45] Stefan Steidel,et al. Gröbner bases of symmetric ideals , 2012, J. Symb. Comput..