Nanogranular origin of concrete creep

Concrete, the solid that forms at room temperature from mixing Portland cement with water, sand, and aggregates, suffers from time-dependent deformation under load. This creep occurs at a rate that deteriorates the durability and truncates the lifespan of concrete structures. However, despite decades of research, the origin of concrete creep remains unknown. Here, we measure the in situ creep behavior of calcium–silicate–hydrates (C–S–H), the nano-meter sized particles that form the fundamental building block of Portland cement concrete. We show that C–S–H exhibits a logarithmic creep that depends only on the packing of 3 structurally distinct but compositionally similar C–S–H forms: low density, high density, ultra-high density. We demonstrate that the creep rate (≈1/t) is likely due to the rearrangement of nanoscale particles around limit packing densities following the free-volume dynamics theory of granular physics. These findings could lead to a new basis for nanoengineering concrete materials and structures with minimal creep rates monitored by packing density distributions of nanoscale particles, and predicted by nanoscale creep measurements in some minute time, which are as exact as macroscopic creep tests carried out over years.

[1]  Zdeněk P. Bažant,et al.  Double-power logarithmic law for concrete creep , 1984 .

[2]  Zdeněk P. Bažant,et al.  Thermodynamics of interacting continua with surfaces and creep analysis of concrete structures , 1972 .

[3]  F. Stillinger,et al.  Improving the Density of Jammed Disordered Packings Using Ellipsoids , 2004, Science.

[4]  Logarithmic rate dependence of force networks in sheared granular materials , 2002, Nature.

[5]  Franz-Josef Ulm,et al.  VOLUME AND DEVIATOR CREEP OF CALCIUM-LEACHED CEMENT-BASED MATERIALS , 2003 .

[6]  Mahalia Miller,et al.  Surface Roughness Criteria for Cement Paste Nanoindentation , 2008 .

[7]  Neil J. A. Sloane,et al.  Kepler's conjecture confirmed , 1998, Nature.

[8]  Franz-Josef Ulm,et al.  POROPLASTIC PROPERTIES OF CALCIUM-LEACHED CEMENT-BASED MATERIALS , 2003 .

[9]  M. Davis,et al.  Creep in a Precipitation-Hardened Alloy , 1950 .

[10]  Franz-Josef Ulm,et al.  Hardness-packing density scaling relations for cohesive-frictional porous materials , 2008 .

[11]  S. Mindess,et al.  Creep and drying shrinkage of calcium silicate pastes III. A hypothesis of irreversible strains , 1979 .

[12]  Franz-Josef Ulm,et al.  Viscoelastic solutions for conical indentation , 2006 .

[13]  K. Scrivener,et al.  Effects of an early or a late heat treatment on the microstructure and composition of inner C-S-H products of Portland cement mortars , 2002 .

[14]  Jeffrey J. Thomas,et al.  A multi-technique investigation of the nanoporosity of cement paste , 2007 .

[15]  Knight,et al.  Density relaxation in a vibrated granular material. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[16]  H. Damme,et al.  Why Does Concrete Set?: The Nature of Cohesion Forces in Hardened Cement-Based Materials , 2004 .

[17]  F. Ulm,et al.  The nanogranular nature of C–S–H , 2007 .

[18]  F. Ulm,et al.  The effect of two types of C-S-H on the elasticity of cement-based materials: Results from nanoindentation and micromechanical modeling , 2004 .

[19]  Peter Adams,et al.  The EMMIX software for the fitting of mixtures of normal and t-components , 1999 .

[20]  H. Jaeger,et al.  Physics of the Granular State , 1992, Science.

[21]  O. H. Wyatt Transient Creep in Pure Metals , 1951, Nature.

[22]  W. Dilger,et al.  Creep of plain and structural concrete , 1983 .

[23]  Hamlin M. Jennings,et al.  A model for the microstructure of calcium silicate hydrate in cement paste , 2000 .

[24]  F. Larrard,et al.  EXTENSION DU DOMAINE D'APPLICATION DES REGLEMENTS DE CALCUL BAEL/BPEL AUX BETONS A 80 MPa - JUSTIFICATIONS SCIENTIFIQUES DES PROPOSITIONS AVANCEES - CALCUL DES DEFORMATIONS INSTANTANEES ET DIFFEREES DES BETONS A HAUTES PERFORMANCES , 1996 .

[25]  T. Boutreux,et al.  Compaction of granular mixtures: a free volume model , 1997 .

[26]  Franz-Josef Ulm,et al.  Microprestress-Solidification Theory for Concrete Creep. I: Aging and Drying Effects , 1997 .

[27]  Heinrich M. Jaeger,et al.  Density fluctuations in vibrated granular materials , 1998 .

[28]  Franz-Josef Ulm,et al.  Grid indentation analysis of composite microstructure and mechanics: Principles and validation , 2006 .

[29]  Surendra P. Shah,et al.  A Reliable Technique to Determine the Local Mechanical Properties at the Nanoscale for Cementitious Materials , 2007 .

[30]  H. Jennings Colloid model of C−S−H and implications to the problem of creep and shrinkage , 2004 .

[31]  Franz-Josef Ulm,et al.  Statistical indentation techniques for hydrated nanocomposites: concrete, bone, and shale , 2007 .

[32]  Jeffrey J. Thomas,et al.  Composition and density of nanoscale calcium-silicate-hydrate in cement. , 2007, Nature materials.

[33]  T. C. Powers,et al.  The thermodynamics of volume change and creep , 1968 .

[34]  Franz-Josef Ulm,et al.  Dual-indentation technique for the assessment of strength properties of cohesive-frictional materials , 2006 .

[35]  R. Feldman,et al.  A model for hydrated Portland cement paste as deduced from sorption-length change and mechanical properties , 1968 .

[36]  Yang-Tse Cheng,et al.  Scaling, dimensional analysis, and indentation measurements , 2004 .

[37]  Anaël Lemaître,et al.  Rearrangements and dilatancy for sheared dense materials. , 2002, Physical review letters.

[38]  L. A. Galin,et al.  CONTACT PROBLEMS IN THE THEORY OF ELASTICITY , 1961 .

[39]  A. Bentur,et al.  Creep and drying shrinkage of calcium silicate pastes II. Induced microstructural and chemical changes , 1978 .

[40]  G. Pharr,et al.  An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments , 1992 .

[41]  Z. Bažant,et al.  Creep and shrinkage prediction model for analysis and design of concrete structures-model B3 , 1995 .

[42]  Franz-Josef Ulm,et al.  Creep and shrinkage of concrete: physical origins and practical measurements , 2001 .

[43]  Franz-Josef Ulm,et al.  Is concrete a poromechanics materials?—A multiscale investigation of poroelastic properties , 2004 .