Superconvergence and a posteriori error estimates for the Stokes eigenvalue problems
暂无分享,去创建一个
Ningning Yan | Wei Gong | N. Yan | Huipo Liu | Shuanghu Wang | W. Gong | Huipo Liu | Shuanghu Wang | Wei Gong
[1] Lars B. Wahlbin,et al. Asymptotically exact a posteriori estimators for the pointwise gradient error on each element in irregular meshes. Part II: The piecewise linear case , 2004, Math. Comput..
[2] Aihui Zhou,et al. Adaptive finite element algorithms for eigenvalue problems based on local averaging type a posteriori error estimates , 2006, Adv. Comput. Math..
[3] Vivette Girault,et al. Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.
[4] Hehu Xie,et al. Approximation and eigenvalue extrapolation of Stokes eigenvalue problem by nonconforming finite element methods , 2009 .
[5] Rolf Rannacher,et al. A posteriori error control for finite element approximations of elliptic eigenvalue problems , 2001, Adv. Comput. Math..
[6] Hongsen Chen,et al. An Interior Estimate of Superconvergence for Finite Element Solutions for Second-Order Elliptic Problems on Quasi-uniform Meshes by Local Projections , 2003, SIAM J. Numer. Anal..
[7] Xiu Ye. Superconvergence of nonconforming finite element method for the Stokes equations , 2002 .
[8] O. C. Zienkiewicz,et al. The superconvergent patch recovery (SPR) and adaptive finite element refinement , 1992 .
[9] Rolf Stenberg,et al. A posteriori estimates for the Stokes eigenvalue problem , 2009 .
[10] Jianhua Pan,et al. Global Superconvergence for the Bilinear-Constant Scheme for the Stokes Problem , 1997 .
[11] Ningning Yan,et al. Enhancing finite element approximation for eigenvalue problems by projection method , 2012 .
[12] Zhimin Zhang,et al. Can We Have Superconvergent Gradient Recovery Under Adaptive Meshes? , 2007, SIAM J. Numer. Anal..
[13] Wei Chen,et al. Approximation of an Eigenvalue Problem Associated with the Stokes Problem by the Stream Function-Vorticity-Pressure Method , 2006 .
[14] Ricardo G. Durán,et al. A Posteriori Error Estimates for the Finite Element Approximation of Eigenvalue Problems , 2003 .
[15] Ricardo H. Nochetto,et al. Small data oscillation implies the saturation assumption , 2002, Numerische Mathematik.
[16] Mats G. Larson,et al. A Posteriori and a Priori Error Analysis for Finite Element Approximations of Self-Adjoint Elliptic Eigenvalue Problems , 2000, SIAM J. Numer. Anal..
[17] C. Chien,et al. Superconvergence of high order FEMs for eigenvalue problems with periodic boundary conditions , 2009 .
[18] Junping Wang,et al. Superconvergence of Finite Element Approximations for the Stokes Problem by Projection Methods , 2001, SIAM J. Numer. Anal..
[19] Jinchao Xu,et al. Numerische Mathematik Convergence and optimal complexity of adaptive finite element eigenvalue computations , 2022 .
[20] Zhimin Zhang,et al. Enhancing Eigenvalue Approximation by Gradient Recovery , 2006, SIAM J. Sci. Comput..
[21] Jinchao Xu,et al. Local and Parallel Finite Element Algorithms for Eigenvalue Problems , 2002 .
[22] Stefano Giani,et al. A Convergent Adaptive Method for Elliptic Eigenvalue Problems , 2009, SIAM J. Numer. Anal..
[23] Ping Wang,et al. On the Monotonicity of (k;g,h)-graphs , 2002 .
[24] Zhimin Zhang,et al. A Posteriori Error Estimates Based on the Polynomial Preserving Recovery , 2004, SIAM J. Numer. Anal..
[25] Xue-Cheng Tai,et al. Superconvergence for the Gradient of Finite Element Approximations by L2 Projections , 2002, SIAM J. Numer. Anal..
[26] Juan Sun,et al. Recovery type a posteriori estimates and superconvergence for nonconforming FEM of eigenvalue problems , 2009 .
[27] Zhimin Zhang,et al. A New Finite Element Gradient Recovery Method: Superconvergence Property , 2005, SIAM J. Sci. Comput..
[28] Jinchao Xu,et al. A two-grid discretization scheme for eigenvalue problems , 2001, Math. Comput..
[29] Hehu Xie,et al. Postprocessing and higher order convergence for the mixed finite element approximations of the Stokes eigenvalue problems , 2009 .
[30] Haijun Wu,et al. Enhancing eigenvalue approximation by gradient recovery on adaptive meshes , 2009 .
[31] Rolf Rannacher,et al. An optimal control approach to a posteriori error estimation in finite element methods , 2001, Acta Numerica.
[32] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[33] B. Mercier,et al. Eigenvalue approximation by mixed and hybrid methods , 1981 .
[34] I. Babuska,et al. Finite element-galerkin approximation of the eigenvalues and Eigenvectors of selfadjoint problems , 1989 .
[35] Daniele Boffi,et al. Finite element approximation of eigenvalue problems , 2010, Acta Numerica.
[36] Gabriel Wittum,et al. Asymptotically exact a posteriori estimators for the pointwise gradient error on each element in irregular meshes. Part 1: A smooth problem and globally quasi-uniform meshes , 2001, Math. Comput..