A partition-based global optimization algorithm

This paper is devoted to the study of partition-based deterministic algorithms for global optimization of Lipschitz-continuous functions without requiring knowledge of the Lipschitz constant. First we introduce a general scheme of a partition-based algorithm. Then, we focus on the selection strategy in such a way to exploit the information on the objective function. We propose two strategies. The first one is based on the knowledge of the global optimum value of the objective function. In this case the selection strategy is able to guarantee convergence of every infinite sequence of trial points to global minimum points. The second one does not require any a priori knowledge on the objective function and tries to exploit information on the objective function gathered during progress of the algorithm. In this case, from a theoretical point of view, we can guarantee the so-called every-where dense convergence of the algorithm.

[1]  G. P. Szegö,et al.  Towards global optimisation : proceedings of a workshop at the University of Cagliari, Italy, October 1974 , 1975 .

[2]  H. Zimmermann Towards global optimization 2: L.C.W. DIXON and G.P. SZEGÖ (eds.) North-Holland, Amsterdam, 1978, viii + 364 pages, US $ 44.50, Dfl. 100,-. , 1979 .

[3]  Aimo A. Törn,et al.  Global Optimization , 1999, Science.

[4]  M. Piccioni,et al.  Random tunneling by means of acceptance-rejection sampling for global optimization , 1989 .

[5]  R. Horst,et al.  Global Optimization: Deterministic Approaches , 1992 .

[6]  Leo Breiman,et al.  A deterministic algorithm for global optimization , 1993, Math. Program..

[7]  C. D. Perttunen,et al.  Lipschitzian optimization without the Lipschitz constant , 1993 .

[8]  Victor P. Gergel A Global Optimization Algorithm for Multivariate Functions with Lipschitzian First Derivatives , 1997, J. Glob. Optim..

[9]  J D Pinter,et al.  Global Optimization in Action—Continuous and Lipschitz Optimization: Algorithms, Implementations and Applications , 2010 .

[10]  Y. Sergeyev On convergence of "divide the best" global optimization algorithms , 1998 .

[11]  Yaroslav D. Sergeyev,et al.  Global one-dimensional optimization using smooth auxiliary functions , 1998, Math. Program..

[12]  Wang Rishuang,et al.  Deterministic Algorithm for Global Optimization , 1998 .

[13]  Panos M. Pardalos,et al.  Introduction to Global Optimization , 2000, Introduction to Global Optimization.

[14]  Roman G. Strongin,et al.  Global optimization with non-convex constraints , 2000 .

[15]  Y. D. Sergeyev,et al.  Global Optimization with Non-Convex Constraints - Sequential and Parallel Algorithms (Nonconvex Optimization and its Applications Volume 45) (Nonconvex Optimization and Its Applications) , 2000 .

[16]  Clara Pizzuti,et al.  Acceleration Tools for Diagonal Information Global Optimization Algorithms , 2001, Comput. Optim. Appl..

[17]  C. T. Kelley,et al.  A Locally-Biased form of the DIRECT Algorithm , 2001, J. Glob. Optim..

[18]  Reiner Horst,et al.  Introduction to Global Optimization (Nonconvex Optimization and Its Applications) , 2002 .

[19]  Jing J. Liang,et al.  Problem Definitions and Evaluation Criteria for the CEC 2005 Special Session on Real-Parameter Optimization , 2005 .

[20]  Panos M. Pardalos,et al.  Encyclopedia of Optimization , 2006 .

[21]  Yaroslav D. Sergeyev,et al.  Global Search Based on Efficient Diagonal Partitions and a Set of Lipschitz Constants , 2006, SIAM J. Optim..

[22]  Daniel E. Finkel,et al.  Additive Scaling and the DIRECT Algorithm , 2006, J. Glob. Optim..

[23]  Donald R. Jones,et al.  Direct Global Optimization Algorithm , 2009, Encyclopedia of Optimization.

[24]  Yaroslav D. Sergeyev,et al.  A univariate global search working with a set of Lipschitz constants for the first derivative , 2009, Optim. Lett..