Unbiased estimation of Weibull parameters with the linear regression method

Abstract Monte Carlo simulations were used to search for the probability estimator for the unbiased estimate of the Weibull parameters in the linear regression method. Compared with commonly-used probability estimators, the estimator proposed gives a more accurate estimation of the Weibull modulus and the same estimation precision of the scale parameter. It is found that the estimator proposed is more conservative than the estimator P i  = ( i  − 0.5)/ n recommended by previous authors, and hence results in a higher safety in reliability predictions. The unbiased properties of the estimated Weibull parameters were validated with actual experimental data. It is also concluded that the estimated Weibull modulus from actual experimental data is more dispersive than that from Monte Carlo simulation, which arises from the fact that the strength data from actual experiments does not perfectly follow the Weibull statistics.

[1]  B. Bergman,et al.  On the estimation of the Weibull modulus , 1984 .

[2]  M. Hamidouche,et al.  Weibull statistical analysis of the mechanical strength of a glass eroded by sand blasting , 1999 .

[3]  Hong Jiang,et al.  Comment on “A new probability index for estimating Weibull modulus for ceramics with the least-square method” , 2003 .

[4]  Liu Chang,et al.  Effects of the number of testing specimens and the estimation methods on the Weibull parameters of solid catalysts , 2001 .

[5]  A. D. Papargyris Estimator type and population size for estimating the weibull modulus in ceramics , 1998 .

[6]  Yukitoshi Oka,et al.  DETERMINATION OF THE TENSILE STRENGTH OF ROCK BY A COMPRESSION TEST OF AN IRREGULAR TEST PIECE , 1966 .

[7]  George D. Quinn,et al.  Advanced Structural Ceramics: A Round Robin , 1990 .

[8]  Ian J. Davies,et al.  Empirical correction factor for the best estimate of Weibull modulus obtained using linear least squares analysis , 2001 .

[9]  K. Trustrum,et al.  On estimating the Weibull modulus for a brittle material , 1979 .

[10]  Ian J. Davies,et al.  Best estimate of Weibull modulus obtained using linear least squares analysis: An improved empirical correction factor , 2004 .

[11]  Liu Chang,et al.  Effects of the calcination conditions on the mechanical properties of a PCoMo/Al2O3 hydrotreating catalyst , 2002 .

[12]  K. Kromp,et al.  Statistical properties of Weibull estimators , 1991 .

[13]  J. D. Sullivan,et al.  Experimental probability estimators for Weibull plots , 1986 .

[14]  Hong Jiang,et al.  Improved Estimation of Weibull Parameters with the Linear Regression Method , 2004 .

[15]  Liu Chang,et al.  Measurement and statistics of single pellet mechanical strength of differently shaped catalysts , 2000 .

[16]  R. Langlois,et al.  Estimation of Weibull parameters , 1991 .

[17]  H. Peterlik,et al.  The validity of Weibull estimators , 1995, Journal of Materials Science.