A Regularization of Quantum Field Hamiltonians with the Aid of p–adic Numbers

Gaussian distributions on infinite-dimensional p-adic spaces are introduced and the corresponding L2-spaces of p-adic-valued square integrable functions are constructed. Representations of the infinite-dimensional Weyl group are realized in p-adic L2-spaces. There is a formal analogy with the usual Segal representation. But there is also a large topological difference: parameters of the p-adic infinite-dimensional Weyl group are defined only on some balls (these balls are additive subgroups). p-adic Hilbert space representations of quantum Hamiltonians for systems with an infinite number of degrees of freedom are constructed. Many Hamiltonians with potentials which are too singular to exist as functions over reals are realized as bounded symmetric operators in L2-spaces with respect to a p-adic Gaussian distribution.

[1]  Günther Ludwig Foundations of quantum mechanics , 1983 .

[2]  A. Schild Discrete Space-time and Integral Lorentz Transformations , 1948, Canadian Journal of Mathematics.

[3]  V. Varadarajan Variations on a theme of Schwinger and Weyl , 1995 .

[4]  Yu. I. Manin,et al.  New dimensions in geometry , 1985 .

[5]  L. Ballentine,et al.  Probabilistic and Statistical Aspects of Quantum Theory , 1982 .

[6]  E. B. Davies Quantum theory of open systems , 1976 .

[7]  K. Parthasarathy An Introduction to Quantum Stochastic Calculus , 1992 .

[8]  Yrjö Ahmavaara,et al.  The Structure of Space and the Formalism of Relativistic Quantum Theory. I , 1965 .

[9]  Edward Witten,et al.  ADELIC STRING AMPLITUDES , 1987 .

[10]  Andrew Khrennikov,et al.  p-adic probability interpretation of Bell's inequality , 1995 .

[11]  Igor Volovich,et al.  On the p-adic summability of the anharmonic oscillator , 1988 .

[12]  Y. Manin REFLECTIONS ON ARITHMETICAL PHYSICS**Dedicated to Alexander Grothendieck on his 60th birthday. , 1989 .

[13]  Sergio Albeverio,et al.  Representations of the Weyl group in spaces of square integrable functions with respect to p-adic valued Gaussian distributions , 1996 .

[14]  Albert Einstein,et al.  Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? , 1935 .

[15]  I. Segal,et al.  Introduction to Algebraic and Constructive Quantum Field Theory , 1992 .

[16]  L. Ballentine,et al.  Quantum mechanics , 1989 .

[17]  H. Weyl The Theory Of Groups And Quantum Mechanics , 1931 .

[18]  Quantum mechanics andp-adic numbers , 1972 .

[19]  E. Prugovec̆ki,et al.  A postulational framework for theories of simultaneous measurement of several observables , 1973 .

[20]  Sergio Albeverio,et al.  A random walk on p-adics - the generator and its spectrum , 1994 .

[21]  J. Glimm,et al.  Boson Quantum Field Models , 1985 .

[22]  E. Prugovec̆ki An Axiomatic Approach to the Formalism of Quantum Mechanics. II. , 1966 .

[23]  P. Freund,et al.  Non-archimedean strings , 1987 .

[24]  A. C. M. van Rooij,et al.  Non-Archimedean functional analysis , 1978 .

[25]  J. Neumann Mathematical Foundations of Quantum Mechanics , 1955 .

[26]  H. Snyder,et al.  Quantized Space-Time , 1947 .

[27]  E. Prugovec̆ki ON A THEORY OF MEASUREMENT OF INCOMPATIBLE OBSERVABLES IN QUANTUM MECHANICS , 1967 .

[28]  M. Röckner,et al.  Stochastic differential equations in infinite dimensions: solutions via Dirichlet forms , 1991 .

[29]  Igor Volovich,et al.  p-adic string , 1987 .

[30]  Katsumi Tanaka,et al.  Quantized Space-Time , 1954 .

[31]  John E. Roberts,et al.  The quantum structure of spacetime at the Planck scale and quantum fields , 1995, hep-th/0303037.

[32]  J. Glimm,et al.  Quantum Physics: A Functional Integral Point of View , 1981 .

[33]  S. Albeverio Nonstandard Methods in Stochastic Analysis and Mathematical Physics , 1986 .

[34]  R. Cianci,et al.  Canp-adic numbers be useful to regularize divergent expectation values of quantum observables? , 1994 .

[35]  S. Albeverio,et al.  Local relativistic invariant flows for quantum fields , 1983 .

[36]  Barry Simon,et al.  The P(φ)[2] Euclidean (quantum) field theory , 1974 .

[37]  Andrei Khrennikov,et al.  p-Adic Valued Distributions in Mathematical Physics , 1994 .

[38]  B. Dragovich,et al.  THE WAVE FUNCTION OF THE UNIVERSE AND p-ADIC GRAVITY , 1991 .