A Regularization of Quantum Field Hamiltonians with the Aid of p–adic Numbers
暂无分享,去创建一个
[1] Günther Ludwig. Foundations of quantum mechanics , 1983 .
[2] A. Schild. Discrete Space-time and Integral Lorentz Transformations , 1948, Canadian Journal of Mathematics.
[3] V. Varadarajan. Variations on a theme of Schwinger and Weyl , 1995 .
[4] Yu. I. Manin,et al. New dimensions in geometry , 1985 .
[5] L. Ballentine,et al. Probabilistic and Statistical Aspects of Quantum Theory , 1982 .
[6] E. B. Davies. Quantum theory of open systems , 1976 .
[7] K. Parthasarathy. An Introduction to Quantum Stochastic Calculus , 1992 .
[8] Yrjö Ahmavaara,et al. The Structure of Space and the Formalism of Relativistic Quantum Theory. I , 1965 .
[9] Edward Witten,et al. ADELIC STRING AMPLITUDES , 1987 .
[10] Andrew Khrennikov,et al. p-adic probability interpretation of Bell's inequality , 1995 .
[11] Igor Volovich,et al. On the p-adic summability of the anharmonic oscillator , 1988 .
[12] Y. Manin. REFLECTIONS ON ARITHMETICAL PHYSICS**Dedicated to Alexander Grothendieck on his 60th birthday. , 1989 .
[13] Sergio Albeverio,et al. Representations of the Weyl group in spaces of square integrable functions with respect to p-adic valued Gaussian distributions , 1996 .
[14] Albert Einstein,et al. Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? , 1935 .
[15] I. Segal,et al. Introduction to Algebraic and Constructive Quantum Field Theory , 1992 .
[16] L. Ballentine,et al. Quantum mechanics , 1989 .
[17] H. Weyl. The Theory Of Groups And Quantum Mechanics , 1931 .
[18] Quantum mechanics andp-adic numbers , 1972 .
[19] E. Prugovec̆ki,et al. A postulational framework for theories of simultaneous measurement of several observables , 1973 .
[20] Sergio Albeverio,et al. A random walk on p-adics - the generator and its spectrum , 1994 .
[21] J. Glimm,et al. Boson Quantum Field Models , 1985 .
[22] E. Prugovec̆ki. An Axiomatic Approach to the Formalism of Quantum Mechanics. II. , 1966 .
[23] P. Freund,et al. Non-archimedean strings , 1987 .
[24] A. C. M. van Rooij,et al. Non-Archimedean functional analysis , 1978 .
[25] J. Neumann. Mathematical Foundations of Quantum Mechanics , 1955 .
[26] H. Snyder,et al. Quantized Space-Time , 1947 .
[27] E. Prugovec̆ki. ON A THEORY OF MEASUREMENT OF INCOMPATIBLE OBSERVABLES IN QUANTUM MECHANICS , 1967 .
[28] M. Röckner,et al. Stochastic differential equations in infinite dimensions: solutions via Dirichlet forms , 1991 .
[29] Igor Volovich,et al. p-adic string , 1987 .
[30] Katsumi Tanaka,et al. Quantized Space-Time , 1954 .
[31] John E. Roberts,et al. The quantum structure of spacetime at the Planck scale and quantum fields , 1995, hep-th/0303037.
[32] J. Glimm,et al. Quantum Physics: A Functional Integral Point of View , 1981 .
[33] S. Albeverio. Nonstandard Methods in Stochastic Analysis and Mathematical Physics , 1986 .
[34] R. Cianci,et al. Canp-adic numbers be useful to regularize divergent expectation values of quantum observables? , 1994 .
[35] S. Albeverio,et al. Local relativistic invariant flows for quantum fields , 1983 .
[36] Barry Simon,et al. The P(φ)[2] Euclidean (quantum) field theory , 1974 .
[37] Andrei Khrennikov,et al. p-Adic Valued Distributions in Mathematical Physics , 1994 .
[38] B. Dragovich,et al. THE WAVE FUNCTION OF THE UNIVERSE AND p-ADIC GRAVITY , 1991 .