Crystallization and high-temperature structural stability of titanium oxide nanotube arrays

The stability of titanium oxide nanotube arrays at elevated temperatures was studied in dry oxygen as well as dry and humid argon environments. The tubes crystallized in the anatase phase at a temperature of about 280 °C irrespective of the ambient. Anatase crystallites formed inside the tube walls and transformed completely to rutile at about 620 °C in dry environments and 570 °C in humid argon. No discernible changes in the dimensions of the tubes were found when the heat treatment was performed in oxygen. However, variations of 10% and 20% in average inner diameter and wall thickness, respectively, were observed when annealing in a dry argon atmosphere at 580 °C for 3 h. Pore shrinkage was even more pronounced in humid argon environments. In all cases the nanotube architecture was found to be stable up to approximately 580 °C, above which oxidation and grain growth in the titanium support disrupted the overlying nanotube array.

[1]  Libo Gao,et al.  Preparation of nano-scale titania thick film and its oxygen sensitivity , 2000 .

[2]  V. Pârvulescu,et al.  Preparation and characterisation of mesoporous zirconium oxide , 2001 .

[3]  S. Yoshikawa,et al.  Formation of Titania Nanotubes with High Photo-Catalytic Activity , 2000 .

[4]  P. Gouma,et al.  ANATASE-TO-RUTILE TRANSFORMATION IN TITANIA POWDERS , 2001 .

[5]  M. Moskovits,et al.  Highly regular anatase nanotubule arrays fabricated in porous anodic templates , 2001 .

[6]  L. Alexander,et al.  X-Ray diffraction procedures for polycrystalline and amorphous materials , 1974 .

[7]  Zhen Ma,et al.  Nanosized anatase TiO2 as precursor for preparation of sulfated titania catalysts , 2002 .

[8]  Tohru Sekino,et al.  Titania Nanotubes Prepared by Chemical Processing , 1999 .

[9]  T. Okubo,et al.  Pore-structure stabilization by controlling particle coordination , 1995 .

[10]  A. Gedanken,et al.  Sonochemical synthesis of titania whiskers andnanotubes , 2001 .

[11]  W. D. Kingery,et al.  Introduction to Ceramics , 1976 .

[12]  Donal D. C. Bradley,et al.  A solid state solar cell using sol–gel processed material and a polymer , 2001 .

[13]  A. Rothschild,et al.  Sensing behavior of TiO2 thin films exposed to air at low temperatures , 2000 .

[14]  P. Hoyer,et al.  Formation of a Titanium Dioxide Nanotube Array , 1996 .

[15]  K. G. Ong,et al.  Highly Ordered Nanoporous Alumina Films: Effect of Pore Size and Uniformity on Sensing Performance , 2002 .

[16]  Craig A. Grimes,et al.  Titanium oxide nanotube arrays prepared by anodic oxidation , 2001 .

[17]  O. J. Whittemore,et al.  Pore growth during the initial stages of sintering ceramics , 1974 .

[18]  Fredrickson,et al.  Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores , 1998, Science.

[19]  Tatsuya Okubo,et al.  Densification of nanostructured titania assisted by a phase transformation , 1992, Nature.

[20]  D. Antonelli Synthesis of phosphorus-free mesoporous titania via templating with amine surfactants , 1999 .

[21]  A. J. Bruce,et al.  Kinetics of Crystallization of ZrF4‐Ba2‐LaF3 Glass by Differential Scanning Calorimetry , 1983 .

[22]  Makoto Harada,et al.  Surfactant‐Mediated Fabrication of Silica Nanotubes , 2000 .

[23]  Kozo Nakamura,et al.  The sol–gel preparation and characterization of nanoporous silica membrane with controlled pore size , 2001 .

[24]  Xing Ding,et al.  Structural evolution of gel-derived nanocrystalline titania powders doped with ferric oxide , 1996 .

[25]  A. Vorontsov,et al.  Morphological structure and physicochemical properties of nanotube TiO2 , 2000 .

[26]  Jing Sun,et al.  Preparation of Long TiO2 Nanotubes from Ultrafine Rutile Nanocrystals , 2002 .

[27]  O. J. Whittemore,et al.  Pore size evolution during sintering of ceramic oxides , 1990 .

[28]  Fabiana C. Gennari,et al.  Kinetics of the anatase–rutile transformation in TiO2 in the presence of Fe2O3 , 1998 .

[29]  A. Burggraaf,et al.  Textural stability of titania–alumina composite membranes , 1993 .

[30]  J. Banfield,et al.  Phase transformation of nanocrystalline anatase-to-rutile via combined interface and surface nucleation , 2000 .

[31]  Zhiyan Xiao,et al.  Experimental investigation on the dielectric behavior of nanostructured rutile-phase titania , 2000 .

[32]  J. Banfield,et al.  Thermodynamic analysis of phase stability of nanocrystalline titania , 1998 .

[33]  Qing Chen,et al.  Preparation and structure analysis of titanium oxide nanotubes , 2001 .

[34]  M. Pijolat,et al.  Kinetics of Anatase TiO2 Surface Area Reduction in a Mixture of HCl, H2O, and O2: l, Experimental Study , 1992 .

[35]  Y. Ohya,et al.  Microstructure of TiO2 and ZnO Films Fabricated by the Sol‐Gel Method , 1996 .

[36]  A. Mozalev,et al.  The formation of nanoporous membranes from anodically oxidized aluminium and their application to Li rechargeable batteries , 2001 .

[37]  J. Ying,et al.  Synthesis and characterization of phosphated mesoporous zirconium oxide , 1997 .

[38]  R. D. Shannon Phase Transformation Studies in TiO2 Supporting Different Defect Mechanisms in Vacuum‐Reduced and Hydrogen‐Reduced Rutile , 1964 .

[39]  M. Bousmina,et al.  Preparation of macrostructured metal oxides by sedimentation–aggregation , 2001 .

[40]  Y. Iida,et al.  Grain Growth and Phase Transformation of Titanium Oxide During Calcination , 1961 .

[41]  Koichi Niihara,et al.  Formation of titanium oxide nanotube , 1998 .

[42]  M. Pijolat,et al.  Initial Sintering of Submicrometer Titania Anatase Powder , 1990 .

[43]  H. Imai,et al.  Direct preparation of anatase TiO2 nanotubes in porous alumina membranes , 1999 .

[44]  H. Nagamoto,et al.  Synthesis and textural properties of unsupported and supported rutile (TiO2) membranes , 1993 .

[45]  A. J. Frank,et al.  Comparison of Dye-Sensitized Rutile- and Anatase-Based TiO2 Solar Cells , 2000 .

[46]  X. Bao,et al.  Branchy alumina nanotubes , 2002 .

[47]  H. Imai,et al.  Structural Changes in Sol-Gel Derived SiO2 and TiO2 Films by Exposure to Water Vapor , 1997 .

[48]  B. N. Nair,et al.  Effect of sintering atmosphere on the pore-structure stability of cerium-doped nanostructured alumina , 1994 .

[49]  S. Kaliaguine,et al.  Perspectives in catalytic applications of mesostructured materials , 2001 .

[50]  B. Shanks,et al.  Characterization of mesoporous alumina molecular sieves synthesized by nonionic templating , 2002 .

[51]  P. Dutta,et al.  Structural stability of titania thin films , 1999 .

[52]  A. Burggraaf,et al.  Textural evolution and phase transformation in titania membranes: Part 1.—Unsupported membranes , 1993 .

[53]  J. A. Pask,et al.  Kinetics of the Anatase‐Rutile Transformation , 1965 .

[54]  Freek Kapteijn,et al.  Catalyst deactivation: is it predictable?: What to do? , 2001 .

[55]  Galo J. A. A. Soler-Illia,et al.  Highly Organized Mesoporous Titania Thin Films Showing Mono-Oriented 2D Hexagonal Channels , 2001 .

[56]  J. Banfield,et al.  UNDERSTANDING POLYMORPHIC PHASE TRANSFORMATION BEHAVIOR DURING GROWTH OF NANOCRYSTALLINE AGGREGATES: INSIGHTS FROM TIO2 , 2000 .