暂无分享,去创建一个
Elmar Eisemann | Boudewijn P. F. Lelieveldt | Thomas Höllt | Nicola Pezzotti | Anna Vilanova | Alexander Mordvintsev | E. Eisemann | A. Mordvintsev | A. Vilanova | T. Höllt | B. Lelieveldt | Nicola Pezzotti
[1] David Gotz,et al. Progressive Visual Analytics: User-Driven Visual Exploration of In-Progress Analytics , 2014, IEEE Transactions on Visualization and Computer Graphics.
[2] Sanjoy Dasgupta,et al. Random projection trees and low dimensional manifolds , 2008, STOC.
[3] Minsuk Kahng,et al. ActiVis: Visual Exploration of Industry-Scale Deep Neural Network Models , 2017, IEEE Transactions on Visualization and Computer Graphics.
[4] Leland McInnes,et al. UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction , 2018, ArXiv.
[5] Shane Legg,et al. Human-level control through deep reinforcement learning , 2015, Nature.
[6] Elmar Eisemann,et al. Interactive Visual Analysis of Mass Cytometry Data by Hierarchical Stochastic Neighbor Embedding Reveals Rare Cell Types , 2017, bioRxiv.
[7] Elmar Eisemann,et al. Hierarchical Stochastic Neighbor Embedding , 2016, Comput. Graph. Forum.
[8] S. Kullback,et al. Information Theory and Statistics , 1959 .
[9] Helwig Hauser,et al. Interactive visualization of streaming data with Kernel Density Estimation , 2011, 2011 IEEE Pacific Visualization Symposium.
[10] Geoffrey E. Hinton,et al. Visualizing Data using t-SNE , 2008 .
[11] M. Rosenblatt. Remarks on Some Nonparametric Estimates of a Density Function , 1956 .
[12] Piet Hut,et al. A hierarchical O(N log N) force-calculation algorithm , 1986, Nature.
[13] J. Kiefer,et al. Stochastic Estimation of the Maximum of a Regression Function , 1952 .
[14] Jingzhou Liu,et al. Visualizing Large-scale and High-dimensional Data , 2016, WWW.
[15] Elmar Eisemann,et al. Mass cytometry reveals innate lymphoid cell differentiation pathways in the human fetal intestine , 2018, The Journal of experimental medicine.
[16] Kai Li,et al. Efficient k-nearest neighbor graph construction for generic similarity measures , 2011, WWW.
[17] Jian Tang,et al. PixelSNE: Visualizing Fast with Just Enough Precision via Pixel-Aligned Stochastic Neighbor Embedding , 2016, ArXiv.
[18] Sverre J. Aarseth,et al. Gravitational N-Body Simulations , 2003 .
[19] Yoshua Bengio,et al. Gradient-based learning applied to document recognition , 1998, Proc. IEEE.
[20] Michael Poidinger,et al. High-dimensional analysis of the murine myeloid cell system , 2014, Nature Immunology.
[21] Jean-Daniel Fekete,et al. Progressive Analytics: A Computation Paradigm for Exploratory Data Analysis , 2016, ArXiv.
[22] J. Tukey. The Future of Data Analysis , 1962 .
[23] Elmar Eisemann,et al. Approximated and User Steerable tSNE for Progressive Visual Analytics , 2015, IEEE Transactions on Visualization and Computer Graphics.
[24] Laurens van der Maaten,et al. Accelerating t-SNE using tree-based algorithms , 2014, J. Mach. Learn. Res..
[25] Elmar Eisemann,et al. DeepEyes: Progressive Visual Analytics for Designing Deep Neural Networks , 2018, IEEE Transactions on Visualization and Computer Graphics.
[26] Elmar Eisemann,et al. Cytosplore: Interactive Immune Cell Phenotyping for Large Single‐Cell Datasets , 2016, Comput. Graph. Forum.
[27] Sean C. Bendall,et al. viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia , 2013, Nature Biotechnology.
[28] David G. Lowe,et al. Scalable Nearest Neighbor Algorithms for High Dimensional Data , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.