Analysis-synthesis of impact sounds by real-time dynamic filtering

This paper presents a sound synthesis model that reproduces impact sounds by taking into account both the perceptual and the physical aspects of the sound. For that, we used a subtractive method based on dynamic filtering of noisy input signals that simulates the damping of spectral components. The resulting sound contains the perceptual characteristics of an impact on a given material. Further, the addition of very few modal contributions-using additive or banded digital waveguide synthesis-together with a bandpass filtering taking into account the interaction with the excitator, allows realistic impact sounds to be synthesized. The synthesis parameters can be linked to a perceptual notion of material and geometry of the sounding object. To determine the synthesis parameters, we further address the problem of analysis-synthesis aiming at reconstructing a given impact sound. The physical parameters are extracted through a time-scale analysis of natural sounds. Examples are presented for sounds generated by impacting plates made of different materials and a piano soundboard.

[1]  Richard Kronland-Martinet,et al.  A Hybrid Resynthesis Model for Hammer-String Interaction of Piano Tones , 2004, EURASIP J. Adv. Signal Process..

[2]  Dinesh K. Pai,et al.  Perception of Material from Contact Sounds , 2000, Presence: Teleoperators & Virtual Environments.

[3]  Dinesh K. Pai,et al.  MEASUREMENTS OF PERCEPTUAL QUALITY OF CONTACT SOUND MODELS , 2002 .

[4]  Perry R. Cook,et al.  Real Sound Synthesis for Interactive Applications , 2002 .

[5]  Stefania Serafin,et al.  Theory of Banded Waveguides , 2004, Computer Music Journal.

[6]  Julius O. Smith,et al.  Commuted Piano Synthesis , 1995, ICMC.

[7]  László Sujbert,et al.  Modeling the Longitudinal Vibration of Piano Strings , 2003 .

[8]  D. Norman,et al.  Everyday listening and auditory icons , 1988 .

[9]  Richard Kronland-Martinet,et al.  The Wavelet Transform for Analysis, Synthesis, and Processing of Speech and Music Sounds , 1988 .

[10]  Efstathios D. Kyriakis-Bitzaros,et al.  Theory and Real-Time Implementation of Time Varying Digital Audio Filters , 1990 .

[11]  J. Bensa,et al.  Efficient modeling of "phantom" partials in piano tones , 2004 .

[12]  C. Wert Internal friction in solids , 1986 .

[13]  Hugo Fastl,et al.  Psychoacoustics: Facts and Models , 1990 .

[14]  Perry R. Cook,et al.  Banded Waveguides: Towards Physical Modeling of Bowed Bar Percussion Instruments , 1999, ICMC.

[15]  Stefania Serafin,et al.  Analysis and synthesis of unusual friction-driven musical instruments , 2002, International Conference on Mathematics and Computing.

[16]  Davide Rocchesso,et al.  Sounding Objects , 2003, IEEE Multim..

[17]  Julius O. Smith,et al.  Introduction to digital filter theory , 1985 .

[18]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[19]  Matti Karjalainen,et al.  Frequency-Zooming ARMA Modeling of Resonant and Reverberant Systems , 2002 .

[20]  Julius O. Smith,et al.  Developments for the Commuted Piano , 1995, ICMC.

[21]  Julius O. Smith,et al.  Physical Modeling Using Digital Waveguides , 1992 .

[22]  Jean Laroche Etude d'un systeme d'analyse et de synthese utilisant la methode de prony. Application aux instruments de type percussif , 1989 .

[23]  J. Aggarwal,et al.  Recursive implementation of LTV filters—Frozen-time transfer function versus generalized transfer function , 1984, Proceedings of the IEEE.

[24]  Heinrich Kuttruff,et al.  Room acoustics , 1973 .

[25]  B. Truax Handbook for Acoustic Ecology , 1980 .

[26]  A. Chaigne,et al.  Time-domain simulation of damped impacted plates. I. Theory and experiments. , 2001, The Journal of the Acoustical Society of America.

[27]  Richard Kronland-Martinet,et al.  Resynthesis of Coupled Piano String Vibrations Based on Physical Modeling , 2001 .

[28]  Dinesh K. Pai,et al.  FoleyAutomatic: physically-based sound effects for interactive simulation and animation , 2001, SIGGRAPH.

[29]  E. Owens,et al.  An Introduction to the Psychology of Hearing , 1997 .

[30]  C. Carello,et al.  Perception of Object Length by Sound , 1998 .

[31]  Jean-Marie Adrien,et al.  The missing link: modal synthesis , 1991 .

[32]  Sølvi Ystad Sound modeling applied to flute sounds , 2000 .

[33]  A Chaigne,et al.  Time-domain simulation of damped impacted plates. II. Numerical model and results. , 2001, The Journal of the Acoustical Society of America.

[34]  L. Mcbride,et al.  A technique for the identification of linear systems , 1965 .

[35]  Perry R. Cook,et al.  Modeling Bill's Gait: Analysis and Parametric Synthesis of Walking Sounds , 2002 .

[36]  Pirouz Djoharian Shape and Material Design in Physical Modeling Sound Synthesis , 2000, ICMC.