A Multiphysics and Multiscale Software Environment for Modeling Astrophysical Systems

We present MUSE, a software framework for tying together existing computational tools for different astrophysical domains into a single multiphysics, multiscale workload. MUSE facilitates the coupling of existing codes written in different languages by providing inter-language tools and by specifying an interface between each module and the framework that represents a balance between generality and computational efficiency. This approach allows scientists to use combinations of codes to solve highly-coupled problems without the need to write new codes for other domains or significantly alter their existing codes. MUSE currently incorporates the domains of stellar dynamics, stellar evolution and stellar hydrodynamics for a generalized stellar systems workload. MUSE has now reached a "Noah's Ark" milestone, with two available numerical solvers for each domain. MUSE can treat small stellar associations, galaxies and everything in between, including planetary systems, dense stellar clusters and galactic nuclei. Here we demonstrate an examples calculated with MUSE: the merger of two galaxies. In addition we demonstrate the working of MUSE on a distributed computer. The current MUSE code base is publicly available as open source at http://muse.li.

[1]  P. Eggleton Evolutionary Processes in Binary and Multiple Stars , 2006 .

[2]  Junichiro Makino,et al.  Star cluster ecology-IV. Dissection of an open star cluster: photometry , 2001 .

[3]  B. Shustov Protostars and Planets II , 1987 .

[4]  Hiroshi Nakai,et al.  Symplectic integrators and their application to dynamical astronomy , 1990 .

[5]  D. Merritt,et al.  Performance Analysis of Direct N-Body Algorithms on Special-Purpose Supercomputers , 2006, astro-ph/0608125.

[6]  B. Fryxell,et al.  FLASH: An Adaptive Mesh Hydrodynamics Code for Modeling Astrophysical Thermonuclear Flashes , 2000 .

[7]  Piet Hut,et al.  Use of Supercomputers in Stellar Dynamics , 1986 .

[8]  P. Hut,et al.  Building a better leapfrog , 1995 .

[9]  D. C. Heggie,et al.  Celestial Mechanics and Dynamical Astronomy , 2004 .

[10]  Robert G. Belleman,et al.  High Performance Direct Gravitational N-body Simulations on Graphics Processing Units , 2007, ArXiv.

[11]  Makoto Taiji,et al.  Scientific simulations with special purpose computers - the GRAPE systems , 1998 .

[12]  Heidelberg,et al.  Formation of Massive Black Holes in Dense Star Clusters , 2003 .

[13]  Simon F. Portegies Zwart,et al.  The Runaway Growth of Intermediate-Mass Black Holes in Dense Star Clusters , 2002, astro-ph/0201055.

[14]  Scott W. Fleming,et al.  Modelling collision products of triple-star mergers , 2003 .

[15]  Naohito Nakasato,et al.  Evolution of Collisionally Merged Massive Stars , 2007, astro-ph/0703290.

[16]  K. Rice,et al.  Protostars and Planets V , 2005 .

[17]  Andreas Just,et al.  Dynamics of Star Clusters and the Milky Way , 2001 .

[18]  F. A. Rasio,et al.  Monte Carlo Simulations of Globular Cluster Evolution. III. Primordial Binary Interactions , 2003, astro-ph/0301521.

[19]  Junichiro Makino,et al.  Formation of massive black holes through runaway collisions in dense young star clusters , 2004, Nature.

[20]  Simon Portegies Zwart,et al.  The MODEST questions: challenges and future directions in stellar cluster research , 2006 .

[21]  Tsuyoshi Hamada,et al.  PGPG : An Automatic Generator of Pipeline Design for Programmable GRAPE Systems , 2005 .

[22]  Douglas C. Heggie,et al.  Binary evolution in stellar dynamics , 1975 .

[23]  B. Paxton EZ to Evolve ZAMS Stars: A Program Derived from Eggleton’s Stellar Evolution Code , 2004, astro-ph/0405130.

[24]  Junichiro Makino,et al.  On a Hermite Integrator with Ahmad-Cohen Scheme for Gravitational Many-Body Problems , 1992 .

[25]  P. J. Storey,et al.  The dusty MOCASSIN: fully self-consistent 3D photoionization and dust radiative transfer models , 2005, astro-ph/0507050.

[26]  V. Springel,et al.  GADGET: a code for collisionless and gasdynamical cosmological simulations , 2000, astro-ph/0003162.

[27]  S. F. Portegies Zwart,et al.  Population synthesis of high-mass binaries , 1996 .

[28]  L. C. Henyey,et al.  Diffuse radiation in the Galaxy , 1940 .

[29]  R. Klessen,et al.  MODEST-1: Integrating stellar evolution and stellar dynamics , 2002, astro-ph/0207318.

[30]  E. Salpeter The Luminosity function and stellar evolution , 1955 .

[31]  Simon Portegies Zwart,et al.  Monte Carlo Simulations of Globular Cluster Evolution. I. Method and Test Calculations , 2000 .

[32]  Department of Physics,et al.  Mixing in massive stellar mergers , 2007, 0707.3021.

[33]  J. Wisdom,et al.  Symplectic maps for the N-body problem. , 1991 .

[34]  Heidelberg,et al.  Runaway collisions in young star clusters - II. Numerical results , 2005, astro-ph/0503130.

[35]  Simon F. Portegies Zwart,et al.  A runaway collision in a young star cluster as the origin of the brightest supernova , 2007, Nature.

[36]  P. Kroupa,et al.  MODEST-2: a summary , 2003 .

[37]  Marco Aldinucci,et al.  Computational Science - ICCS 2008, 8th International Conference, Kraków, Poland, June 23-25, 2008, Proceedings, Part I , 2008, ICCS.

[38]  D. Vanbeveren,et al.  The Evolution of Very Massive Stars , 2007, astro-ph/0701334.

[39]  Toshikazu Ebisuzaki,et al.  MASSIVE BLACK HOLES IN STAR CLUSTERS. II. REALISTIC CLUSTER MODELS , 2004 .

[40]  J. R. Hurley,et al.  Evolution of stellar collision products in open clusters : I. Blue stragglers in N-body models of M 67 , 2008, 0806.0863.

[41]  Simon Portegies Zwart,et al.  High-performance direct gravitational N-body simulations on graphics processing units , 2007, astro-ph/0702058.

[42]  Peter P. Eggleton,et al.  The Evolution of low mass stars , 1971 .

[43]  P. Hut,et al.  Joint Discussion 6 Neutron stars and black holes in star clusters , 2006, Proceedings of the International Astronomical Union.

[44]  Ivan R. King,et al.  The structure of star clusters. III. Some simple dvriamical models , 1966 .

[45]  H. Plummer On the Problem of Distribution in Globular Star Clusters: (Plate 8.) , 1911 .

[46]  A. Boss,et al.  Protostars and Planets VI , 2000 .

[47]  Piet Hut,et al.  A hierarchical O(N log N) force-calculation algorithm , 1986, Nature.

[48]  Christopher A. Tout,et al.  The distribution of visual binaries with two bright components , 1989 .

[49]  Frederic A. Rasio,et al.  Stellar Collisions and the Interior Structure of Blue Stragglers , 2001, astro-ph/0107388.

[50]  S. F. Portegies Zwart,et al.  Mass Segregation in Globular Clusters , 2002 .

[51]  Junichiro Makino Direct Simulation of Dense Stellar Systems with GRAPE-6 , 2000 .