Mouse models of retinal ganglion cell death and glaucoma.

Once considered too difficult to use for glaucoma studies, mice are now becoming a powerful tool in the research of the molecular and pathological events associated with this disease. Often adapting technologies first developed in rats, ganglion cell death in mice can be induced using acute models and chronic models of experimental glaucoma. Similarly, elevated IOP has been reported in transgenic animals carrying defects in targeted genes. Also, one group of mice, from the DBA/2 line of inbred animals, develops a spontaneous optic neuropathy with many features of human glaucoma that is associated with IOP elevation caused by an anterior chamber pigmentary disease. The advent of mice for glaucoma research is already having a significant impact on our understanding of this disease, principally because of the access to genetic manipulation technology and genetics already well established for these animals.

[1]  R. Stone,et al.  Noninvasive intraocular pressure measurements in mice by pneumotonometry. , 2005, Investigative ophthalmology & visual science.

[2]  M. Ingelsson,et al.  Transcriptional up-regulation and activation of initiating caspases in experimental glaucoma. , 2005, The American journal of pathology.

[3]  B. Yandell,et al.  Rgcs1, a dominant QTL that affects retinal ganglion cell death after optic nerve crush in mice , 2008, BMC Neuroscience.

[4]  Michael G. Anderson,et al.  Absence of glaucoma in DBA/2J mice homozygous for wild-type versions of Gpnmb and Tyrp1 , 2007, BMC Genetics.

[5]  J. Morrison,et al.  Neurotrophin roles in retinal ganglion cell survival: lessons from rat glaucoma models. , 2009, Experimental eye research.

[6]  C. Becker,et al.  Dependency of intraocular pressure elevation and glaucomatous changes in DBA/2J and DBA/2J-Rj mice. , 2008, Investigative ophthalmology & visual science.

[7]  Eberhart Zrenner,et al.  Retinal neurodegeneration in the DBA/2J mouse—a model for ocular hypertension , 2004, Acta Neuropathologica.

[8]  J. Morrison,et al.  Global changes in optic nerve head gene expression after exposure to elevated intraocular pressure in a rat glaucoma model. , 2007, Investigative ophthalmology & visual science.

[9]  M. Civan,et al.  Reliable measurement of mouse intraocular pressure by a servo-null micropipette system. , 2001, Investigative ophthalmology & visual science.

[10]  C. Grosskreutz,et al.  Downregulation of Thy1 in Retinal Ganglion Cells in Experimental Glaucoma , 2006, Current eye research.

[11]  L. Pinto,et al.  Insertion of the βGeo Promoter Trap into the Fem1c Gene of ROSA3 Mice , 2004, Molecular and Cellular Biology.

[12]  J. Morrison,et al.  Changes in Thy1 gene expression associated with damaged retinal ganglion cells. , 2001, Molecular vision.

[13]  C. L. Schlamp,et al.  Experimental induction of retinal ganglion cell death in adult mice. , 1999, Investigative ophthalmology & visual science.

[14]  John Danias,et al.  Method for the noninvasive measurement of intraocular pressure in mice. , 2003, Investigative ophthalmology & visual science.

[15]  L. Wheeler,et al.  Neuroprotection of retinal ganglion cells by brimonidine in rats with laser-induced chronic ocular hypertension. , 2001, Investigative ophthalmology & visual science.

[16]  R. Ribchester,et al.  The progressive nature of Wallerian degeneration in wild-type and slow Wallerian degeneration (WldS) nerves , 2005, BMC Neuroscience.

[17]  D. Korb,et al.  A goniolens for clinical monitoring of the mouse iridocorneal angle and optic nerve. , 2002, Molecular vision.

[18]  A. Verkman,et al.  Mouse model of sustained elevation in intraocular pressure produced by episcleral vein occlusion. , 2006, Experimental eye research.

[19]  Robert N Weinreb,et al.  Aqueous humor dynamics in mice. , 2003, Investigative ophthalmology & visual science.

[20]  Bin Chen,et al.  Topographic and morphologic analyses of retinal ganglion cell loss in old DBA/2NNia mice. , 2006, Investigative ophthalmology & visual science.

[21]  L. Maffei,et al.  Long‐term Survival of Retina Optic Nerve Section in Adult Ganglion Cells Following bcl‐2 Transgenic Mice , 1996 .

[22]  R. Weinreb,et al.  Ocular hypertension in mice with a targeted type I collagen mutation. , 2003, Investigative ophthalmology & visual science.

[23]  J. Wiggs Genetic etiologies of glaucoma. , 2007, Archives of ophthalmology.

[24]  Michael G. Anderson,et al.  By Altering Ocular Immune Privilege, Bone Marrow–derived Cells Pathogenically Contribute to DBA/2J Pigmentary Glaucoma , 2003, The Journal of experimental medicine.

[25]  Robert N Weinreb,et al.  Experimental mouse ocular hypertension: establishment of the model. , 2003, Investigative ophthalmology & visual science.

[26]  O. Grinchuk,et al.  Transgenic mice expressing the Tyr437His mutant of human myocilin protein develop glaucoma. , 2008, Investigative ophthalmology & visual science.

[27]  E. Lütjen-Drecoll,et al.  Morphology of the murine optic nerve. , 2002, Investigative ophthalmology & visual science.

[28]  Michael G. Anderson,et al.  GpnmbR150X allele must be present in bone marrow derived cells to mediate DBA/2J glaucoma , 2008, BMC Genetics.

[29]  C. L. Schlamp,et al.  Dominant inheritance of retinal ganglion cell resistance to optic nerve crush in mice , 2007, BMC Neuroscience.

[30]  S. Cory,et al.  The Bcl-2 protein family: arbiters of cell survival. , 1998, Science.

[31]  S. Wu,et al.  Effects of elevated intraocular pressure on mouse retinal ganglion cells , 2005, Vision Research.

[32]  C. Grosskreutz,et al.  Calcineurin cleavage is triggered by elevated intraocular pressure, and calcineurin inhibition blocks retinal ganglion cell death in experimental glaucoma. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[33]  Michael G. Anderson,et al.  Interacting loci cause severe iris atrophy and glaucoma in DBA/2J mice , 1999, Nature Genetics.

[34]  Joseph M Harrison,et al.  Tonopen measurement of intraocular pressure in mice. , 2004, Experimental eye research.

[35]  Robert N Weinreb,et al.  Optic nerve damage in mice with a targeted type I collagen mutation. , 2004, Investigative ophthalmology & visual science.

[36]  J. Morrison,et al.  Effect of general anesthetics on IOP in rats with experimental aqueous outflow obstruction. , 2000, Investigative ophthalmology & visual science.

[37]  R. Nickells From ocular hypertension to ganglion cell death: a theoretical sequence of events leading to glaucoma. , 2007, Canadian journal of ophthalmology. Journal canadien d'ophtalmologie.

[38]  S. Korsmeyer,et al.  Bcl-2 and Bax function independently to regulate cell death , 1997, Nature Genetics.

[39]  Yan Li,et al.  Progressive ganglion cell loss and optic nerve degeneration in DBA/2J mice is variable and asymmetric , 2006, BMC Neuroscience.

[40]  S. John,et al.  Glaucoma: Thinking in new ways—a rôle for autonomous axonal self-destruction and other compartmentalised processes? , 2005, Progress in Retinal and Eye Research.

[41]  M. Wax,et al.  Noninvasive measurement of rodent intraocular pressure with a rebound tonometer. , 2005, Investigative ophthalmology & visual science.

[42]  T. Salt,et al.  Assessment of Rat and Mouse RGC Apoptosis Imaging in Vivo with Different Scanning Laser Ophthalmoscopes , 2007, Current eye research.

[43]  S. John,et al.  Mechanistic Insights into Glaucoma Provided by Experimental Genetics , 2005 .

[44]  R. Masland,et al.  Retinal ganglion cell degeneration is topological but not cell type specific in DBA/2J mice , 2005, The Journal of cell biology.

[45]  S. Korsmeyer,et al.  Suppression of developmental retinal cell death but not of photoreceptor degeneration in Bax-deficient mice. , 1998, Investigative ophthalmology & visual science.

[46]  I. MacDonald,et al.  In Memoriam: Dr. Lois Lloyd and Dr. Ronald Casey , 2007 .

[47]  M. Hernandez The optic nerve head in glaucoma: role of astrocytes in tissue remodeling , 2000, Progress in Retinal and Eye Research.

[48]  E. Wawrousek,et al.  Expression of Mutated Mouse Myocilin Induces Open-Angle Glaucoma in Transgenic Mice , 2006, The Journal of Neuroscience.

[49]  V. Sheffield,et al.  Clinical features associated with mutations in the chromosome 1 open-angle glaucoma gene (GLC1A) , 1998, The New England journal of medicine.

[50]  S. Sharma,et al.  Programmed cell death of retinal ganglion cells during experimental glaucoma. , 1995, Experimental eye research.

[51]  S. Korsmeyer,et al.  Widespread Elimination of Naturally Occurring Neuronal Death inBax-Deficient Mice , 1998, The Journal of Neuroscience.

[52]  E. Tamm,et al.  Transgenic studies on the role of optineurin in the mouse eye. , 2006, Experimental eye research.

[53]  C. Toris,et al.  Rebound tonometry in conscious, conditioned mice avoids the acute and profound effects of anesthesia on intraocular pressure. , 2008, Journal of ocular pharmacology and therapeutics : the official journal of the Association for Ocular Pharmacology and Therapeutics.

[54]  Robert N Weinreb,et al.  Optic nerve damage in experimental mouse ocular hypertension. , 2003, Investigative ophthalmology & visual science.

[55]  T H Roderick,et al.  Essential iris atrophy, pigment dispersion, and glaucoma in DBA/2J mice. , 1998, Investigative ophthalmology & visual science.

[56]  Michael G. Anderson,et al.  Inherited glaucoma in DBA/2J mice: pertinent disease features for studying the neurodegeneration. , 2005, Visual neuroscience.

[57]  A. Warbritton,et al.  Glaucoma in food-restricted and ad libitum-fed DBA/2NNia mice. , 1995, Laboratory animal science.

[58]  J. Morrison,et al.  Noninvasive measurement of rat intraocular pressure with the Tono-Pen. , 1993, Investigative ophthalmology & visual science.

[59]  T. Filippopoulos,et al.  Quantitative analysis of retinal ganglion cell (RGC) loss in aging DBA/2NNia glaucomatous mice: comparison with RGC loss in aging C57/BL6 mice. , 2003, Investigative ophthalmology & visual science.

[60]  S. John Mechanistic insights into glaucoma provided by experimental genetics the cogan lecture. , 2005, Investigative ophthalmology & visual science.

[61]  S. Korsmeyer,et al.  Cloning the chromosomal breakpoint of t(14;18) human lymphomas: clustering around Jh on chromosome 14 and near a transcriptional unit on 18 , 1985, Cell.

[62]  R. Oppenheim,et al.  Response of motoneurons to neonatal sciatic nerve axotomy in Bax-knockout mice , 2003, Molecular and Cellular Neuroscience.

[63]  S. John,et al.  Intraocular pressure in inbred mouse strains. , 1997, Investigative ophthalmology & visual science.

[64]  B. Liu,et al.  Glaucomatous Optic Neuropathy: When Glia Misbehave , 2003, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[65]  S. Lipton,et al.  New perspectives on glaucoma. , 1999, JAMA.

[66]  P. Russell,et al.  Elevated amounts of myocilin in the aqueous humor of transgenic mice cause significant changes in ocular gene expression. , 2007, Experimental eye research.

[67]  B E Cohan,et al.  Measurement of intraocular pressure in awake mice. , 2001, Investigative ophthalmology & visual science.

[68]  B. Link,et al.  The primary open-angle glaucoma gene WDR36 functions in ribosomal RNA processing and interacts with the p53 stress-response pathway. , 2008, Human molecular genetics.

[69]  D. Zack,et al.  Changes in gene expression in experimental glaucoma and optic nerve transection: the equilibrium between protective and detrimental mechanisms. , 2007, Investigative ophthalmology & visual science.

[70]  Yan Li,et al.  Susceptibility to Neurodegeneration in a Glaucoma Is Modified by Bax Gene Dosage , 2005, PLoS genetics.

[71]  C. L. Schlamp,et al.  Bax-dependent and independent pathways of retinal ganglion cell death induced by different damaging stimuli. , 2000, Experimental eye research.

[72]  D. Zack,et al.  Caspase activation and amyloid precursor protein cleavage in rat ocular hypertension. , 2002, Investigative ophthalmology & visual science.

[73]  J. Crowston,et al.  Comparison of invasive and non-invasive tonometry in the mouse. , 2006, Experimental eye research.

[74]  M. Whitacre,et al.  Sources of error with use of Goldmann-type tonometers. , 1993, Survey of ophthalmology.

[75]  Vittorio Porciatti,et al.  Axons of retinal ganglion cells are insulted in the optic nerve early in DBA/2J glaucoma , 2007, The Journal of cell biology.

[76]  Young H. Kwon,et al.  Laser-induced mouse model of chronic ocular hypertension. , 2003, Investigative ophthalmology & visual science.

[77]  David J. Calkins,et al.  Progressive Ganglion Cell Degeneration Precedes Neuronal Loss in a Mouse Model of Glaucoma , 2008, The Journal of Neuroscience.

[78]  C. Meshul,et al.  A rat model of chronic pressure-induced optic nerve damage. , 1997, Experimental eye research.

[79]  R. Schreiber,et al.  Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death , 1990, Nature.

[80]  William Cepurna,et al.  Understanding mechanisms of pressure-induced optic nerve damage , 2005, Progress in Retinal and Eye Research.

[81]  Michael G. Anderson,et al.  High-dose radiation with bone marrow transfer prevents neurodegeneration in an inherited glaucoma. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[82]  Joan W. Miller,et al.  Tumor Necrosis Factor-α Mediates Oligodendrocyte Death and Delayed Retinal Ganglion Cell Loss in a Mouse Model of Glaucoma , 2006, The Journal of Neuroscience.

[83]  Ronald L Gross,et al.  A mouse model of elevated intraocular pressure: retina and optic nerve findings. , 2003, Transactions of the American Ophthalmological Society.

[84]  E. Yaksi,et al.  The recombination activation gene 1 (Rag1) is expressed in a subset of zebrafish olfactory neurons but is not essential for axon targeting or amino acid detection , 2005, BMC Neuroscience.

[85]  R. Weinreb,et al.  Reduction of intraocular pressure in mouse eyes treated with latanoprost. , 2002, Investigative ophthalmology & visual science.

[86]  D. Minckler,et al.  Intraocular pressure in Lewis rats. , 1994, Investigative ophthalmology & visual science.