Cancer Cell International CANCER CELL INTERNATIONAL BioMed Central Review Clinical implications and utility of field cancerization

[1]  G. Berx,et al.  VHL Promotes E2 Box-Dependent E-Cadherin Transcription by HIF-Mediated Regulation of SIP1 and Snail , 2006, Molecular and Cellular Biology.

[2]  R. Burk,et al.  Primary cilium formation requires von hippel-lindau gene function in renal-derived cells. , 2006, Cancer research.

[3]  R. Raval,et al.  Regulation of E-cadherin expression by VHL and hypoxia-inducible factor. , 2006, Cancer research.

[4]  E. Rankin,et al.  Renal cyst development in mice with conditional inactivation of the von Hippel-Lindau tumor suppressor. , 2006, Cancer research.

[5]  M. Yáñez-Mó,et al.  von Hippel-Lindau tumor suppressor protein regulates the assembly of intercellular junctions in renal cancer cells through hypoxia-inducible factor-independent mechanisms. , 2006, Cancer research.

[6]  M. Ohh,et al.  Characterization of a von Hippel Lindau pathway involved in extracellular matrix remodeling, cell invasion, and angiogenesis. , 2006, Cancer research.

[7]  P. Carmeliet,et al.  Genetic evidence for a tumor suppressor role of HIF-2alpha. , 2005, Cancer cell.

[8]  Patrick H. Maxwell,et al.  Contrasting Properties of Hypoxia-Inducible Factor 1 (HIF-1) and HIF-2 in von Hippel-Lindau-Associated Renal Cell Carcinoma , 2005, Molecular and Cellular Biology.

[9]  W. Kaelin,et al.  Role of VHL gene mutation in human cancer. , 2004, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[10]  E. Maher,et al.  Genotype–phenotype correlations in von Hippel‐Lindau disease , 2004, Human mutation.

[11]  J. Klco,et al.  pVHL Modification by NEDD8 Is Required for Fibronectin Matrix Assembly and Suppression of Tumor Development , 2004, Molecular and Cellular Biology.

[12]  O. Iliopoulos,et al.  Inhibition of hypoxia-inducible factor is sufficient for growth suppression of VHL-/- tumors. , 2004, Molecular cancer research : MCR.

[13]  W. Kaelin,et al.  Inhibition of HIF2α Is Sufficient to Suppress pVHL-Defective Tumor Growth , 2003, PLoS biology.

[14]  R. Bernards,et al.  Stable suppression of tumorigenicity by virus-mediated RNA interference. , 2002, Cancer cell.

[15]  Richard D Klausner,et al.  The contribution of VHL substrate binding and HIF1-alpha to the phenotype of VHL loss in renal cell carcinoma. , 2002, Cancer cell.

[16]  P. O’Farrell Faculty Opinions recommendation of HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. , 2001 .

[17]  P. Ratcliffe,et al.  Contrasting effects on HIF-1alpha regulation by disease-causing pVHL mutations correlate with patterns of tumourigenesis in von Hippel-Lindau disease. , 2001, Human molecular genetics.

[18]  M. Ivan,et al.  HIFα Targeted for VHL-Mediated Destruction by Proline Hydroxylation: Implications for O2 Sensing , 2001, Science.

[19]  Michael I. Wilson,et al.  Targeting of HIF-α to the von Hippel-Lindau Ubiquitylation Complex by O2-Regulated Prolyl Hydroxylation , 2001, Science.

[20]  R. Burk,et al.  VHL Induces Renal Cell Differentiation and Growth Arrest through Integration of Cell-Cell and Cell-Extracellular Matrix Signaling , 2001, Molecular and Cellular Biology.

[21]  L. Poellinger,et al.  Mechanism of regulation of the hypoxia‐inducible factor‐1α by the von Hippel‐Lindau tumor suppressor protein , 2000, The EMBO journal.

[22]  M. Ivan,et al.  Ubiquitination of hypoxia-inducible factor requires direct binding to the β-domain of the von Hippel–Lindau protein , 2000, Nature Cell Biology.

[23]  Chrétien,et al.  Renal lesions in von Hippel–Lindau disease: immunohistochemical expression of nephron differentiation molecules, adhesion molecules and apoptosis proteins , 2000, Histopathology.

[24]  R. Klausner,et al.  Identification of the von Hippel-lindau tumor-suppressor protein as part of an active E3 ubiquitin ligase complex. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[25]  R. Klausner,et al.  The von Hippel-Lindau Tumor Suppressor Gene Inhibits Hepatocyte Growth Factor/Scatter Factor-Induced Invasion and Branching Morphogenesis in Renal Carcinoma Cells , 1999, Molecular and Cellular Biology.

[26]  M. Gstaiger,et al.  The von Hippel-Lindau tumor suppressor protein is a component of an E3 ubiquitin-protein ligase activity. , 1999, Genes & development.

[27]  C. Wykoff,et al.  The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis , 1999, Nature.

[28]  S. Elledge,et al.  Rbx1, a component of the VHL tumor suppressor complex and SCF ubiquitin ligase. , 1999, Science.

[29]  W. Kaelin,et al.  Structure of the VHL-ElonginC-ElonginB complex: implications for VHL tumor suppressor function. , 1999, Science.

[30]  B. Seizinger,et al.  Alternate choice of initiation codon produces a biologically active product of the von Hippel Lindau gene with tumor suppressor activity , 1999, Oncogene.

[31]  W. Kaelin,et al.  von Hippel-Lindau gene-mediated growth suppression and induction of differentiation in renal cell carcinoma cells grown as multicellular tumor spheroids. , 1998, Cancer research.

[32]  W. Kaelin,et al.  pVHL19 is a biologically active product of the von Hippel-Lindau gene arising from internal translation initiation. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[33]  R. Burk,et al.  A second major native von Hippel-Lindau gene product, initiated from an internal translation start site, functions as a tumor suppressor. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[34]  D. Louis,et al.  The von Hippel-Lindau tumor suppressor protein is required for proper assembly of an extracellular fibronectin matrix. , 1998, Molecular cell.

[35]  W. Kaelin,et al.  Regulation of Hypoxia-Inducible mRNAs by the von Hippel-Lindau Tumor Suppressor Protein Requires Binding to Complexes Containing Elongins B/C and Cul2 , 1998, Molecular and Cellular Biology.

[36]  R. Klausner,et al.  The von Hippel-Lindau tumor-suppressor gene product forms a stable complex with human CUL-2, a member of the Cdc53 family of proteins. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[37]  R. Naviaux,et al.  The pCL vector system: rapid production of helper-free, high-titer, recombinant retroviruses , 1996, Journal of virology.

[38]  F. Chen,et al.  Genotype-phenotype correlation in von Hippel-Lindau disease: identification of a mutation associated with VHL type 2A. , 1996, Journal of medical genetics.

[39]  A. Kibel,et al.  Binding of the von Hippel-Lindau tumor suppressor protein to Elongin B and C , 1995, Science.

[40]  A. Kibel,et al.  Tumour suppression by the human von Hippel-Lindau gene product , 1995, Nature Medicine.

[41]  F. Chen,et al.  Genotype-phenotype correlations in von Hippel-Lindau disease (VHL) , 1994 .

[42]  J. Brooks,et al.  Mutations of the VHL tumour suppressor gene in renal carcinoma , 1994, Nature Genetics.

[43]  J. Gnarra,et al.  Identification of the von Hippel-Lindau disease tumor suppressor gene. , 1993, Science.

[44]  W. Linehan,et al.  Germline mutations in the von Hippel–Lindau disease tumor suppressor gene: Correlations with phenotype , 1995, Human mutation.

[45]  Á.,et al.  Hematopoietic Differentiation Antigens That Are Membrane-Associated Enzymes : Cutting Is the Key ! , 2022 .