Real-time electrical and morphological characterizations of gas sensing Ti(Pc)2 devices under working conditions

[1]  A. Generosi,et al.  Energy dispersive x-ray reflectometry as a unique laboratory tool for investigating morphological properties of layered systems and devices , 2006 .

[2]  R. Caminiti,et al.  Morphological variations as nonstandard test parameters for the response to pollutant gas concentration: An application to Ruthenium Phthalocyanine sensing films , 2006 .

[3]  Dayong Jin,et al.  Long-lived visible luminescence of UV LEDs and impact on LED excited time-resolved fluorescence applications , 2006 .

[4]  L. Valli Phthalocyanine-based Langmuir-Blodgett films as chemical sensors. , 2005, Advances in colloid and interface science.

[5]  R. Caminiti,et al.  Evidence of a rearrangement of the surface structure in titanium phthalocyanine sensors induced by the interaction with nitrogen oxides molecules , 2005 .

[6]  Rungnapa Tongpool,et al.  Kinetics of nitrogen dioxide exposure in lead phthalocyanine sensors , 2005 .

[7]  Amanda Generosi,et al.  Experimental evidence of a two-step reversible absorption/desorption process in ruthenium phtalocyanine gas sensing films by in situ energy dispersive x-ray reflectometry , 2005 .

[8]  R. Caminiti,et al.  Time-resolved energy dispersive x-ray reflectometry measurements on ruthenium phthalocyanine gas sensing films , 2003 .

[9]  Andrea A. Mencaglia,et al.  Reversible and selective detection of NO2 by means of optical fibres , 2001 .

[10]  Valerio Rossi Albertini,et al.  The kinetics of phase transitions observed by energy-dispersive X-ray diffraction , 1999 .

[11]  C. J. Liu,et al.  The surface reaction and diffusion of NO2 in lead phthalocyanine thin film , 1999 .

[12]  J. Simon,et al.  METALLOPHTHALOCYANINES. GAS SENSORS, RESISTORS AND FIELD EFFECT TRANSISTORS , 1998 .

[13]  F. Baldini,et al.  A new sandwich-type diphthalocyanine as a potential optical transducer for NO2 detection , 1998 .

[14]  J. Hsieh,et al.  Response characteristics of lead phthalocyanine gas sensor: effects of film thickness and crystal morphology , 1998 .

[15]  A. Capobianchi,et al.  EFFECT OF NITROGEN DIOXIDE ON TITANIUM BISPHTHALOCYANINATO THIN FILMS , 1998 .

[16]  A. Capobianchi,et al.  Electrochromism in sandwich-type diphthalocyanines: electrochemical and spectroscopic behaviour of bis(phthalocyaninato)titanium(IV) (Ti(Pc)2) film , 1995 .

[17]  A. Capobianchi,et al.  Interligand carbon-carbon .sigma.-bond breaking and repair in a "stapled" bis(phthalocyaninato)titanium complex. Synthesis, characterization, and electrical conductivity properties of oxidation products of bis(phthalocyaninato)titanium(IV) and bis(phthalocyaninato)tin(IV) and x-ray crystal structure , 1993 .

[18]  J. Simon,et al.  Lutetium bisphthalocyanine thin films for gas detection , 1992 .

[19]  M. Hanack,et al.  Iodine-doped bridged phthalocyaninatoiron(II) and -ruthenium(II) compounds , 1987 .

[20]  J. Ferraro,et al.  Introduction to Synthetic Electrical Conductors , 1987 .

[21]  J. L. Stanton,et al.  Cu(pc)I: A Molecular Metal With A One-dimensional Array of Local Moments Embedded In A “Fermi Sea” of Charge Carriers , 1987 .

[22]  J. Lyding,et al.  Cofacial assembly of partially oxidized metallomacrocycles as an approach to controlling lattice architecture in low-dimensional molecular "metals". Probing band structure-counterion interactions in conductive [M(phthalocyaninato)O]n macromolecules using nitrosonium oxidants. , 1986, Journal of the American Chemical Society.

[23]  L. G. Parratt Surface Studies of Solids by Total Reflection of X-Rays , 1954 .

[24]  H. Kiessig Interferenz von Röntgenstrahlen an dünnen Schichten , 1930, Naturwissenschaften.

[25]  R. Caminiti,et al.  Energy Dispersive X-ray Reflectometry of the NO2 Interaction with Ruthenium Phthalocyanine Films , 2003 .

[26]  R. A. Collins,et al.  Electrical conduction mechanisms in thermally evaporated lead phthalocyanine thin films , 1996 .

[27]  H. Tian,et al.  Diffusion behaviour of charge carriers in thin films of phthalocyanines , 1995 .

[28]  A. Paoletti,et al.  Two phthalocyanine units ‘stapled’ by carbon–carbon σ bonds in a new sandwich-type molecule: {5,5′;19,19′-bi[phthalocyaninato (2–)]}titanium(IV). Synthesis, X-ray crystal structure, and properties , 1990 .