Post-depositional remanent magnetization lock-in for marine sediments deduced from 10 Be and paleomagnetic records through the Matuyama-Brunhes boundary

[1]  J. Channell,et al.  The Matuyama Chronozone at ODP Site 982 (Rockall Bank): Evidence for Decimeter‐Scale Magnetization Lock‐In Depths , 2013 .

[2]  Y. Yokoyama,et al.  10Be evidence for delayed acquisition of remanent magnetization in marine sediments: Implication for a new age for the Matuyama–Brunhes boundary , 2010 .

[3]  T. Yamazaki,et al.  Geomagnetic relative paleointensity chronostratigraphy of sediment cores from the Okhotsk Sea , 2010 .

[4]  L. Sagnotti,et al.  Relative geomagnetic paleointensity of the Brunhes Chron and the Matuyama–Brunhes precursor as recorded in sediment core from Wilkes Land Basin (Antarctica) , 2010 .

[5]  Y. Suganuma South Asian monsoon variability during the past 800 kyr revealed by rock magnetic proxies , 2009 .

[6]  A. Roberts,et al.  Post-depositional remanent magnetization lock-in and the location of the Matuyama-Brunhes geomagnetic reversal boundary in marine and Chinese loess sequences , 2008 .

[7]  M. Knudsen,et al.  In-phase anomalies in Beryllium-10 production and palaeomagnetic field behaviour during the Iceland Basin geomagnetic excursion , 2008 .

[8]  J. Valet,et al.  Constraints on the acquisition of remanent magnetization in fine-grained sediments imposed by redeposition experiments , 2006 .

[9]  L. Tauxe,et al.  Depositional remanent magnetization: Toward an improved theoretical and experimental foundation , 2006 .

[10]  F. Budillon,et al.  Evidence for a variable paleomagnetic lock‐in depth in the Holocene sequence from the Salerno Gulf (Italy): Implications for “high‐resolution” paleomagnetic dating , 2005 .

[11]  Hirokuni Oda,et al.  A geomagnetic paleointensity stack between 0.8 and 3.0 Ma from equatorial Pacific sediment cores , 2005 .

[12]  James G. Ogg,et al.  A Geologic Time Scale 2004: CONCEPTS AND METHODS , 2005 .

[13]  L. Meynadier,et al.  Geomagnetic dipole strength and reversal rate over the past two million years , 2005, Nature.

[14]  B. Jicha,et al.  Structural and temporal requirements for geomagnetic field reversal deduced from lava flows , 2005, Nature.

[15]  A. Roberts,et al.  Why are geomagnetic excursions not always recorded in sediments? Constraints from post-depositional remanent magnetization lock-in modelling , 2004 .

[16]  C. Laj,et al.  Geomagnetic-assisted stratigraphy and sea surface temperature changes in core MD94-103 (Southern Indian Ocean): possible implications for North–South climatic relationships around H4 , 2002 .

[17]  R. Thunell,et al.  Super ENSO and Global Climate Oscillations at Millennial Time Scales , 2002, Science.

[18]  A. Roberts,et al.  North Pacific response to millennial‐scale changes in ocean circulation over the last 60 kyr , 2001 .

[19]  C. Kissel,et al.  Geomagnetic paleointensity and environmental record from Labrador Sea core MD95-2024: global marine sediment and ice core chronostratigraphy for the last 110 kyr , 2000 .

[20]  H. Synal,et al.  Reconstruction of the geomagnetic field between 20 and 60 kyr BP from cosmogenic radionuclides in the GRIP ice core , 2000 .

[21]  L. Tauxe,et al.  Effects of pH and salinity on the intensity of magnetization in redeposited sediments , 2000 .

[22]  L. Brown,et al.  Bioturbation and Holocene sediment accumulation fluxes in the north-east Atlantic Ocean (Benthic Boundary Layer experiment sites) , 2000 .

[23]  J. Channell,et al.  Geomagnetic palaeointensities and astrochronological ages for the Matuyama–Brunhes boundary and the boundaries of the Jaramillo Subchron: palaeomagnetic and oxygen isotope records from ODP Site 983 , 2000, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[24]  J. Beer,et al.  North Atlantic palaeointensity stack since 75ka (NAPIS–75) and the duration of the Laschamp event , 2000, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[25]  B. Boudreau Mean mixed depth of sediments: The wherefore and the why , 1998 .

[26]  Jeffrey C. Lagarias,et al.  Convergence Properties of the Nelder-Mead Simplex Method in Low Dimensions , 1998, SIAM J. Optim..

[27]  T. Herbert,et al.  Astronomical calibration of the Matuyama-Brunhes boundary: Consequences for magnetic remanence acquisition in marine carbonates and the Asian loess sequences , 1996 .

[28]  L. Meynadier,et al.  Post-depositional realignment of magnetic grains and asymmetrical saw-tooth patterns of magnetization intensity , 1996 .

[29]  L. Tauxe,et al.  A precursor to the Matuyama/Brunhes transition-field instability as recorded in pelagic sediments , 1996 .

[30]  A. R. H. Swan,et al.  Introduction to Geological Data Analysis , 1995 .

[31]  B. Boudreau Is burial velocity a master parameter for bioturbation , 1994 .

[32]  L. Meynadier,et al.  Geomagnetic field intensity and reversals during the past four million years , 1993, Nature.

[33]  D. Kent,et al.  A detailed chronology of the Australasian impact event, the Brunhes-Matuyama geomagnetic polarity reversal, and global climate change , 1992 .

[34]  P. deMenocal,et al.  Depth of post-depositional remanence acquisition in deep-sea sediments: a case study of the Brunhes-Matuyama reversal and oxygen isotopic Stage 19.1 , 1990 .

[35]  D. Lynch,et al.  Determination of mixing parameters from tracer distributions in deep-sea sediment cores , 1983 .

[36]  Y. Otofuji,et al.  A magnetization process of sediments: laboratory experiments on post-depositional remanent magnetization , 1981 .

[37]  Y. Hamano An experiment on the post-depositional remanent magnetization in artificial and natural sediments , 1980 .

[38]  K. Verosub Depositional and postdepositional processes in the magnetization of sediments , 1977 .

[39]  David R. Schink,et al.  Quantitative estimates of biological mixing rates in abyssal sediments , 1975 .

[40]  D. Kent Post-depositional Remanent Magnetisation in Deep-sea Sediment , 1973, Nature.

[41]  E. Irving POST‐DEPOSITIONAL DETRITAL REMANENT MAGNETIZATION IN A SYNTHETIC SEDIMENT , 1964 .

[42]  M. De Handbuch der Physik , 1957 .

[43]  Clifford H. Thurber,et al.  Parameter estimation and inverse problems , 2005 .

[44]  A. Roberts,et al.  A 2.14-Myr astronomically tuned record of relative geomagnetic paleointensity from the western Philippine Sea , 2003 .

[45]  T. Dobeneck,et al.  Geomagnetic Events and Relative Paleointensity Records - Clues to High-Resolution Paleomagnetic Chronostratigraphies of Late Quaternary Marine Sediments? , 1999 .

[46]  Gerold Wefer,et al.  Use of proxies in paleoceanography : examples from the South Atlantic , 1999 .

[47]  D. Kent,et al.  Correlation of paleointensity variation records in the Brunhes/Matuyama polarity transition interval , 1995 .

[48]  M. Hyodo Possibility of Reconstruction of the Past Geomagnetic Field from Homogeneous Sediments , 1984 .

[49]  W. B. Harland A Geologic time scale , 1982 .

[50]  D. Lal,et al.  COSMIC RAY PRODUCED RADIOACTIVITY ON THE EARTH. , 1967 .

[51]  H. Dines ‘Soil’ Mechanics , 1944, Nature.