Nanoelectronic-Based Detection for Biology and Medicine

This chapter is a review of the work in nanoelectronic detection of biological molecules and its applications in biology and medicine. About half of the chapter focuses on the methods employed to immobilize deoxyribonucleic acid (DNA) on solid substrates with particular focus on the electronic detection and characterization of DNA. Charge-transfer properties and theories are explained, as such electronic and electrical sensing of molecular-level interactions are very important in medical applications for rapid and cheap diagnosis.

[1]  Giese,et al.  The Influence of Mismatches on Long-Distance Charge Transport through DNA This work was supported by the Swiss National Science Foundation and the Volkswagen Foundation. , 2000, Angewandte Chemie.

[2]  Tomoji Kawai,et al.  Electrical conduction through poly(dA)-poly(dT) and poly(dG)-poly(dC) DNA molecules. , 2001, Physical review letters.

[3]  R. Reich,et al.  Direct detection of nucleic acid hybridization on the surface of a charge coupled device. , 1994, Nucleic acids research.

[4]  S. Kelley,et al.  Engineering DNA-electrode connectivities: manipulation of linker length and structure , 2003 .

[5]  M R Arkin,et al.  Long-range photoinduced electron transfer through a DNA helix. , 1993, Science.

[6]  Mark A. Ratner,et al.  On the Long-Range Charge Transfer in DNA , 2000 .

[7]  Marc Gershow,et al.  Detecting single stranded DNA with a solid state nanopore. , 2005, Nano letters.

[8]  K. Schulten,et al.  Sizing DNA using a nanometer-diameter pore. , 2004, Biophysical journal.

[9]  R. Buhrman,et al.  Fabrication of thin‐film metal nanobridges , 1989 .

[10]  G. S. Manning The molecular theory of polyelectrolyte solutions with applications to the electrostatic properties of polynucleotides , 1978, Quarterly Reviews of Biophysics.

[11]  K. Schulten,et al.  The electromechanics of DNA in a synthetic nanopore. , 2006, Biophysical journal.

[12]  C. Dekker,et al.  Direct measurement of electrical transport through DNA molecules , 2000, Nature.

[13]  D. Klinov,et al.  Proximity-induced superconductivity in DNA. , 2001, Science.

[14]  Y. Rogers,et al.  The use of 96-well polystyrene plates for DNA hybridization-based assays: an evaluation of different approaches to oligonucleotide immobilization. , 1995, Analytical biochemistry.

[15]  P. Batson,et al.  Formation of nanopores in a SiN/SiO2 membrane with an electron beam , 2005 .

[16]  H. Fink,et al.  Electrical conduction through DNA molecules , 1999, Nature.

[17]  Rashid Bashir,et al.  Direct current electrical characterization of ds-DNA in nanogap junctions , 2005 .

[18]  Gary B. Schuster,et al.  Mechanism of Charge Transport in DNA: Internally-Linked Anthraquinone Conjugates Support Phonon-Assisted Polaron Hopping , 1999 .

[19]  Michael Zwolak,et al.  Electronic signature of DNA nucleotides via transverse transport. , 2004, Nano letters.

[20]  R. Stanley Williams,et al.  Molecule-Independent Electrical Switching in Pt/Organic Monolayer/Ti Devices , 2004 .

[21]  Marc Gershow,et al.  DNA molecules and configurations in a solid-state nanopore microscope , 2003, Nature materials.

[22]  Aleksei Aksimentiev,et al.  Stretching DNA using the electric field in a synthetic nanopore. , 2005, Nano letters.

[23]  M. Michel-beyerle,et al.  Charge transfer and transport in DNA. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[24]  K. Schulten,et al.  Microscopic Kinetics of DNA Translocation through synthetic nanopores. , 2004, Biophysical journal.

[25]  Rashid Bashir,et al.  Solid-state nanopore channels with DNA selectivity. , 2007, Nature nanotechnology.

[26]  Rashid Bashir,et al.  Fabrication and characterization of solid-state nanopores using a field emission scanning electron microscope , 2006 .

[27]  D. Branton,et al.  Characterization of individual polynucleotide molecules using a membrane channel. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[28]  Sidney R. Cohen,et al.  Electrical properties of short DNA oligomers characterized by conducting atomic force microscopy , 2004 .

[29]  M F Lawrence,et al.  Impedance-based detection of DNA sequences using a silicon transducer with PNA as the probe layer. , 2004, Nucleic acids research.

[30]  Cees Dekker,et al.  Fabrication and characterization of nanopore-based electrodes with radii down to 2 nm. , 2006, Nano letters.

[31]  Elizabeth Pennisi Reaching Their Goal Early, Sequencing Labs Celebrate , 2003, Science.

[32]  C. Dekker,et al.  Experimental observation of nonlinear ionic transport at the nanometer scale. , 2006, Nano letters.

[33]  Joseph Wang,et al.  Nanoparticle-based electrochemical DNA detection , 2003 .

[34]  Hari Singh Nalwa,et al.  Encyclopedia of nanoscience and nanotechnology , 2011 .

[35]  K. Healy Nanopore-based single-molecule DNA analysis. , 2007, Nanomedicine.

[36]  Sean Conlan,et al.  Stochastic sensing of organic analytes by a pore-forming protein containing a molecular adapter , 1999, Nature.

[37]  U. Keyser,et al.  Salt dependence of ion transport and DNA translocation through solid-state nanopores. , 2006, Nano letters.

[38]  Michael J. Aziz,et al.  Ion-beam sculpting at nanometre length scales , 2001, Nature.

[39]  R S Snart,et al.  The electrical properties and stability of DNA to UV radiation and aromatic hydrocarbons , 1973, Biopolymers.

[40]  S. Howorka,et al.  Sequence-specific detection of individual DNA strands using engineered nanopores , 2001, Nature Biotechnology.

[41]  Tomoji Kawai,et al.  Control of electrical conduction in DNA using oxygen hole doping , 2002 .

[42]  E. Braun,et al.  DNA-templated assembly and electrode attachment of a conducting silver wire , 1998, Nature.

[43]  E Souteyrand,et al.  Optimisation of a silicon/silicon dioxide substrate for a fluorescence DNA microarray. , 2004, Biosensors & bioelectronics.

[44]  D. D. Eley,et al.  Semiconductivity of organic substances. Part 9.—Nucleic acid in the dry state , 1962 .

[45]  C. Dekker,et al.  Translocation of double-strand DNA through a silicon oxide nanopore. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[46]  Peng Chen,et al.  Atomic Layer Deposition to Fine-Tune the Surface Properties and Diameters of Fabricated Nanopores. , 2004, Nano letters.

[47]  H. W. Zandbergen,et al.  Electron-beam-induced deformations of SiO2 nanostructures , 2005 .

[48]  D. Beratan,et al.  DNA: Insulator or wire? , 1997, Chemistry & biology.

[49]  M. Anantram,et al.  Environment and structure influence on DNA conduction , 2003 .

[50]  Cees Dekker,et al.  Optical tweezers for force measurements on DNA in nanopores , 2006 .

[51]  Cees Dekker,et al.  Direct force measurements on DNA in a solid-state nanopore , 2006 .

[52]  Jiajun Gu,et al.  PROBING SINGLE DNA MOLECULE TRANSPORT USING FABRICATED NANOPORES. , 2004, Nano letters.

[53]  Kwan S. Kwok,et al.  Moletronics: future electronics , 2002 .

[54]  A M Baró,et al.  Contactless experiments on individual DNA molecules show no evidence for molecular wire behavior , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[55]  Yuyuan Tian,et al.  Direct conductance measurement of single DNA molecules in aqueous solution , 2004 .

[56]  E Artacho,et al.  Absence of dc-conductivity in lambda-DNA. , 2000, Physical review letters.

[57]  A. Harriman,et al.  ENERGY- AND ELECTRON-TRANSFER PROCESSES INVOLVING PALLADIUM PORPHYRINS BOUND TO DNA , 1994 .

[58]  J. Yi Conduction of DNA molecules: A charge-ladder model , 2003 .

[59]  Jang-Kyoo Shin,et al.  An FET-type charge sensor for highly sensitive detection of DNA sequence. , 2004, Biosensors & bioelectronics.

[60]  Jin-Ho Choy,et al.  Intercalative nanohybrids of nucleoside monophosphates and DNA in layered metal hydroxide , 1999 .

[61]  Cees Dekker,et al.  Insulating behavior for DNA molecules between nanoelectrodes at the 100 nm length scale , 2001 .

[62]  N. Turro,et al.  Paradigms, supermolecules, electron transfer and chemistry at a distance. What's the problem? The science or the paradigm? , 1998, JBIC Journal of Biological Inorganic Chemistry.

[63]  K. J. Jeong,et al.  Sequence specific electronic conduction through polyion-stabilized double-stranded DNA in nanoscale break junctions , 2007 .

[64]  Tomoji Kawai,et al.  Self-assembled DNA networks and their electrical conductivity , 2000 .

[65]  Chuen Ho,et al.  Electrolytic transport through a synthetic nanometer-diameter pore. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[66]  Wolfgang Fritzsche,et al.  Precise positioning of individual DNA structures in electrode gaps by self-organization onto guiding microstructures , 2004 .

[67]  A. Storm,et al.  Single molecule experiments on DNA with novel silicon nanostructures , 2004 .

[68]  D. Branton,et al.  Rapid nanopore discrimination between single polynucleotide molecules. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[69]  N. N. Gribov,et al.  A new fabrication process for metallic point contacts , 1997 .

[70]  D. Beveridge,et al.  A 5-nanosecond molecular dynamics trajectory for B-DNA: analysis of structure, motions, and solvation. , 1997, Biophysical journal.

[71]  Rashid Bashir,et al.  DNA-Mediated Fluctuations in Ionic Current through Silicon Oxide Nanopore Channels. Nano Lett., 4(8), 1551-1556 , 2004 .

[72]  D. McNabb,et al.  Slowing DNA translocation in a solid-state nanopore. , 2005, Nano letters.

[73]  Magdalena Gabig-Ciminska,et al.  Developing nucleic acid-based electrical detection systems. , 2006 .

[74]  Tomoji Kawai,et al.  Influence of Humidity on the Electrical Conductivity of Synthesized DNA Film on Nanogap Electrode , 2002 .

[75]  Zhi-Gang Yu,et al.  Variable range hopping and electrical conductivity along the DNA double helix. , 2001, Physical review letters.

[76]  C. Dekker Solid-state nanopores. , 2007, Nature nanotechnology.

[77]  Paul R. Selvin,et al.  Single-molecule techniques : a laboratory manual , 2008 .

[78]  P. Burke,et al.  Electronic manipulation of DNA, proteins, and nanoparticles for potential circuit assembly. , 2004, Biosensors & bioelectronics.

[79]  Y. Zhu,et al.  Contact, charging, and disorder effects on charge transport through a model DNA molecule , 2004 .

[80]  Hagan Bayley,et al.  Toward single molecule DNA sequencing: direct identification of ribonucleoside and deoxyribonucleoside 5'-monophosphates by using an engineered protein nanopore equipped with a molecular adapter. , 2006 .

[81]  A versatile multi-platform biochip surface attachment chemistry , 2003 .

[82]  Robert G. Endres,et al.  Colloquium: The quest for high-conductance DNA , 2004 .