High performance domain decomposition methods on massively parallel architectures with freefem++

Abstract - In this document, we present a parallel implementation in freefem++ of scalable two-level domain decomposition methods. Numerical studies with highly heterogeneous problems are then performed on large clusters in order to assert the performance of our code.

[1]  Andrea Toselli,et al.  Domain decomposition methods : algorithms and theory , 2005 .

[2]  Barry Smith,et al.  Domain Decomposition Methods for Partial Differential Equations , 1997 .

[3]  Gonçalo Pena,et al.  Feel++ : A computational framework for Galerkin Methods and Advanced Numerical Methods , 2012 .

[4]  Chao Yang,et al.  ARPACK users' guide - solution of large-scale eigenvalue problems with implicitly restarted Arnoldi methods , 1998, Software, environments, tools.

[5]  W. Bangerth,et al.  deal.II—A general-purpose object-oriented finite element library , 2007, TOMS.

[6]  J. Demmel,et al.  Sun Microsystems , 1996 .

[7]  Robert Scheichl,et al.  A robust two-level domain decomposition preconditioner for systems of PDEs , 2011 .

[8]  Cornelis Vuik,et al.  Comparison of Two-Level Preconditioners Derived from Deflation, Domain Decomposition and Multigrid Methods , 2009, J. Sci. Comput..

[9]  J. Mandel Balancing domain decomposition , 1993 .

[10]  Xiao-Chuan Cai,et al.  A Restricted Additive Schwarz Preconditioner for General Sparse Linear Systems , 1999, SIAM J. Sci. Comput..

[11]  Vipin Kumar,et al.  A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs , 1998, SIAM J. Sci. Comput..

[12]  Marcus Sarkis,et al.  Restricted Overlapping Balancing Domain Decomposition Methods and Restricted Coarse Problems for the Helmholtz Problem , 2007 .

[13]  Cornelis Vuik,et al.  On the Construction of Deflation-Based Preconditioners , 2001, SIAM J. Sci. Comput..

[14]  Hua Xiang,et al.  A Coarse Space Construction Based on Local Dirichlet-to-Neumann Maps , 2011, SIAM J. Sci. Comput..

[15]  Henk A. van der Vorst,et al.  Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..

[16]  Barry F. Smith,et al.  Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations , 1996 .

[17]  François Pellegrini,et al.  PT-Scotch: A tool for efficient parallel graph ordering , 2008, Parallel Comput..

[18]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[19]  P. Vassilevski Multilevel Block Factorization Preconditioners: Matrix-based Analysis and Algorithms for Solving Finite Element Equations , 2008 .