A review of the spectral, pseudo‐spectral, finite‐difference and finite‐element modelling techniques for geophysical imaging

Modelling methods are nowadays at the heart of any geophysical interpretation approach. These are heavily relied upon by imaging techniques in elastodynamics and electromagnetism, where they are crucial for the extraction of subsurface characteristics from ever larger and denser datasets. While high-frequency or one-way approximations are very powerful and efficient, they reach their limits when complex geological settings and solutions of full equations are required at finite frequencies. A review of three important formulations is carried out here: the spectral method, which is very efficient and accurate but generally restricted to simple earth structures and often layered earth structures; the pseudo-spectral, finite-difference and finite-volume methods based on strong formulation of the partial differential equations, which are easy to implement and currently represent a good compromise between accuracy, efficiency and flexibility and the continuous or discontinuous Galerkin finite-element methods that are based on the weak formulation, which lead to more accurate earth representations and therefore to more accurate solutions, although with higher computational costs and more complex use. The choice between these different approaches is still difficult and depends on the applications. Guidelines are given here through discussion of the requirements for imaging/inversion.

[1]  J. Virieux,et al.  Theory and Observations: Body Waves, Ray Methods, and Finite-Frequency Effects , 2007 .

[2]  J. Virieux,et al.  An hp-adaptive discontinuous Galerkin finite-element method for 3-D elastic wave modelling , 2010 .

[3]  Gerald W. Hohmann,et al.  Magnetotelluric responses of three-dimensional bodies in layered earths , 1984 .

[4]  C. Thurber,et al.  Theory and Observations – Seismic Tomography and Inverse Methods , 2007 .

[5]  S. Operto,et al.  3D finite-difference frequency-domain modeling of visco-acoustic wave propagation using a massively parallel direct solver: A feasibility study , 2007 .

[6]  J. Bielak,et al.  Domain Reduction Method for Three-Dimensional Earthquake Modeling in Localized Regions, Part I: Theory , 2003 .

[7]  A. Giannopoulos,et al.  A nonsplit complex frequency-shifted PML based on recursive integration for FDTD modeling of elastic waves , 2007 .

[8]  Jean Virieux,et al.  Velocity model building by 3D frequency-domain, full-waveform inversion of wide-aperture seismic data , 2008 .

[9]  A. Tarantola,et al.  Two‐dimensional nonlinear inversion of seismic waveforms: Numerical results , 1986 .

[10]  Ekkehart Tessmer,et al.  3-D Elastic Modeling With Surface Topography By a Chebychev Spectral Method , 1994 .

[11]  Mrinal K. Sen,et al.  A new MCMC algorithm for seismic waveform inversion and corresponding uncertainty analysis , 2009 .

[12]  Tatsuhiko Hara,et al.  Two efficient algorithms for iterative linearized inversion of seismic waveform data , 1993 .

[13]  G. Newman,et al.  Direct reservoir parameter estimation using joint inversion of seismic AVO & marine CSEM data , 2004 .

[14]  Yibo Wang,et al.  Viscoelastic wave simulation in basins by a variable-grid finite-difference method , 2001 .

[15]  J. Hesthaven,et al.  Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications , 2007 .

[16]  G. J. Haltiner Numerical Prediction and Dynamic Meteorology , 1980 .

[17]  Eduardo Kausel,et al.  Fundamental Solutions in Elastodynamics: Contents , 2006 .

[18]  Michel Dietrich,et al.  Nonlinear waveform inversion of plane-wave seismograms in stratified elastic media , 1991 .

[19]  A. Tarantola,et al.  Nonlinear Inversion of Seismic Reflection Data , 1984 .

[20]  Michel Dietrich,et al.  Perturbations of the seismic reflectivity of a fluid-saturated depth-dependent poro-elastic medium , 2008 .

[21]  Allen Taflove,et al.  Computational Electrodynamics the Finite-Difference Time-Domain Method , 1995 .

[22]  R. Stenberg A family of mixed finite elements for the elasticity problem , 1988 .

[23]  Z. Alterman,et al.  Propagation of elastic waves in layered media by finite difference methods , 1968 .

[24]  Patrick Joly,et al.  A New Family of Mixed Finite Elements for the Linear Elastodynamic Problem , 2001, SIAM J. Numer. Anal..

[25]  J. Sochacki Absorbing boundary conditions for the elastic wave equations , 1988 .

[26]  C. Shin,et al.  An optimal 9-point, finite-difference, frequency-space, 2-D scalar wave extrapolator , 1996 .

[27]  O. C. Zienkiewicz,et al.  The Finite Element Method for Solid and Structural Mechanics , 2013 .

[28]  R. Plessix Three-dimensional frequency-domain full-waveform inversion with an iterative solver , 2009 .

[29]  Gregory A. Newman,et al.  20. Electromagnetic Modeling and Inversion on Massively Parallel Computers , 1999 .

[30]  Aria Abubakar,et al.  Application of the finite-difference contrast-source inversion algorithm to seismic full-waveform data , 2009 .

[31]  John Etgen,et al.  Computational methods for large-scale 3D acoustic finite-difference modeling: A tutorial , 2007 .

[32]  J. Virieux P-SV wave propagation in heterogeneous media: Velocity‐stress finite‐difference method , 1986 .

[33]  Julien Diaz,et al.  Energy Conserving Explicit Local Time Stepping for Second-Order Wave Equations , 2007, SIAM J. Sci. Comput..

[34]  Qing Huo Liu,et al.  PERFECTLY MATCHED LAYERS FOR ELASTODYNAMICS: A NEW ABSORBING BOUNDARY CONDITION , 1996 .

[35]  William W. Symes,et al.  Reverse time migration with optimal checkpointing , 2007 .

[36]  Robert J. Geller,et al.  Computation of synthetic seismograms and their partial derivatives for heterogeneous media with arbitrary natural boundary conditions using the Direct Solution Method , 1994 .

[37]  M. Clemens,et al.  Discrete Electromagnetism With the Finite Integration Technique - Abstract , 2001 .

[38]  R. LeVeque Finite Volume Methods for Hyperbolic Problems: Characteristics and Riemann Problems for Linear Hyperbolic Equations , 2002 .

[39]  W. A. Mulder,et al.  A multigrid solver for 3D electromagnetic diffusion , 2006 .

[40]  Andreas Fichtner,et al.  Theoretical background for continental‐ and global‐scale full‐waveform inversion in the time–frequency domain , 2008 .

[41]  Stéphanie Chaillat,et al.  A multi-level fast multipole BEM for 3-D elastodynamics in the frequency domain , 2008 .

[42]  Robert J. Geller,et al.  Optimally accurate second order time-domain finite difference scheme for computing synthetic seismograms in 2-D and 3-D media , 2000 .

[43]  Jean-Pierre Berenger,et al.  A perfectly matched layer for the absorption of electromagnetic waves , 1994 .

[44]  Christopher J. Bean,et al.  Numerical simulation of seismic waves using a discrete particle scheme , 2000 .

[45]  Carl Tape,et al.  Seismic tomography of the southern California crust based on spectral‐element and adjoint methods , 2010 .

[46]  S. Operto,et al.  Mixed‐grid and staggered‐grid finite‐difference methods for frequency‐domain acoustic wave modelling , 2004 .

[47]  S. Frankel,et al.  Stability conditions in the numerical treatment of parabolic differential equations , 1953 .

[48]  Jean Virieux,et al.  Free and smooth boundaries in 2-D finite-difference schemes for transient elastic waves , 2007, 0706.3825.

[49]  Géza Seriani,et al.  Spectral element method for acoustic wave simulation in heterogeneous media , 1994 .

[50]  Géza Seriani,et al.  Numerical simulation of interface waves by high‐order spectral modeling techniques , 1992 .

[51]  N. Frazer Seismic Wave Propagation in Stratified Media , 1987 .

[52]  Olav Holberg,et al.  Computational aspects of the choice of operator and sampling interval for numerical differentiation in large-scale simulation of wave phenomena , 1985 .

[53]  Gerald W. Hohmann,et al.  Diffusion of electromagnetic fields into a two-dimensional earth; a finite-difference approach , 1984 .

[54]  D. L. Alumbaugh,et al.  Three-dimensional electromagnetic modeling and inversion on massively parallel computers , 1996 .

[55]  John H. Woodhouse,et al.  Mapping the upper mantle: Three‐dimensional modeling of earth structure by inversion of seismic waveforms , 1984 .

[56]  Olav Holberg,et al.  COMPUTATIONAL ASPECTS OF THE CHOICE OF OPERATOR AND SAMPLING INTERVAL FOR NUMERICAL DIFFERENTIATION IN LARGE-SCALE SIMULATION OF WAVE PHENOMENA* , 1987 .

[57]  Jean-Pierre Vilotte,et al.  Spectral Element Analysis in Seismology , 2007 .

[58]  M. Dumbser,et al.  An arbitrary high-order Discontinuous Galerkin method for elastic waves on unstructured meshes — III. Viscoelastic attenuation , 2007 .

[59]  Cornelis Vuik,et al.  A Novel Multigrid Based Preconditioner For Heterogeneous Helmholtz Problems , 2005, SIAM J. Sci. Comput..

[60]  Mark A. Dablain High order differencing for the scalar wave equation , 1984 .

[61]  Bruce A. Bolt,et al.  Finite-element computation of seismic anomalies for bodies of arbitrary shape , 1976 .

[62]  L. Wheeler,et al.  Some theorems in classical elastodynamics , 1968 .

[63]  C. H. Dix,et al.  Reflection and Refraction of Progressive Seismic Waves , 1963 .

[64]  Mrinal K. Sen,et al.  Global Optimization Methods in Geophysical Inversion , 1995 .

[65]  Romain Brossier,et al.  Parsimonious finite-volume frequency-domain method for 2-D P–SV-wave modelling , 2008 .

[66]  José M. Carcione,et al.  An accurate and efficient scheme for wave propagation in linear viscoelastic media , 1990 .

[67]  T. Jordan,et al.  FAST TRACK PAPER: Full three-dimensional tomography: a comparison between the scattering-integral and adjoint-wavefield methods , 2007 .

[68]  V. Akcelik,et al.  Full Waveform Inversion for Seismic Velocity and Anelastic Losses in Heterogeneous Structures , 2007 .

[69]  Jean Virieux,et al.  Frequency-Domain Numerical Modelling of Visco-Acoustic Waves Based on Finite-Difference and Finite-Element Discontinuous Galerkin Methods , 2010 .

[70]  Mike Warner,et al.  Efficient and Effective 3D Wavefield Tomography , 2008 .

[71]  Gerald W. Hohmann,et al.  Nonlinear magnetic inversion using a random search method , 1983 .

[72]  Michel Dietrich,et al.  Perturbations of the seismic reflectivity of a fluid-saturated depth-dependent poroelastic medium. , 2008, The Journal of the Acoustical Society of America.

[73]  J. de la Puente,et al.  The Potential of Discontinuous Galerkin Methods for Full Waveform Tomography , 2010 .

[74]  L. Cagniard Basic theory of the magneto-telluric method of geophysical prospecting , 1953 .

[75]  Frank Press,et al.  Earth models obtained by Monte Carlo inversion. , 1968 .

[76]  Gerald W. Hohmann Three-dimensional em modeling , 1983 .

[77]  E. Toro,et al.  An arbitrary high-order Discontinuous Galerkin method for elastic waves on unstructured meshes - V. Local time stepping and p-adaptivity , 2007 .

[78]  Michael Dumbser,et al.  Discontinuous Galerkin methods for wave propagation in poroelastic media , 2008 .

[79]  B. Engquist,et al.  Absorbing boundary conditions for acoustic and elastic wave equations , 1977, Bulletin of the Seismological Society of America.

[80]  W Hohmann Gerald,et al.  Numerical modeling for electromagnetic methods of geophysics , 1987 .

[81]  C. Tam,et al.  Dispersion-relation-preserving finite difference schemes for computational acoustics , 1993 .

[82]  D. Kosloff,et al.  Solution of the equations of dynamic elasticity by a Chebychev spectral method , 1990 .

[83]  Bengt Fornberg,et al.  A practical guide to pseudospectral methods: Introduction , 1996 .

[84]  E. Haber,et al.  Fast Simulation of 3D Electromagnetic Problems Using Potentials , 2000 .

[85]  Y. Rubin,et al.  Direct reservoir parameter estimation using joint inversion of marine seismic AVA and CSEM data , 2005 .

[86]  Vadim Lisitsa,et al.  Lebedev scheme for the numerical simulation of wave propagation in 3D anisotropic elasticity ‡ , 2010 .

[87]  James J. Carazzone,et al.  Three Dimensional Imaging of Marine CSEM Data , 2005 .

[88]  René-Édouard Plessix,et al.  A Helmholtz iterative solver for 3D seismic-imaging problems , 2007 .

[89]  Joël Piraux,et al.  Numerical treatment of two-dimensional interfaces for acoustic and elastic waves , 2004 .

[90]  Peter Moczo,et al.  Finite-difference technique for SH-waves in 2-D media using irregular grids-application to the seismic response problem , 1989 .

[91]  Edip Baysal,et al.  Forward modeling by a Fourier method , 1982 .

[92]  K. Yee Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media , 1966 .

[93]  Mrinal K. Sen,et al.  The interior penalty discontinuous Galerkin method for elastic wave propagation: grid dispersion , 2008 .

[94]  René-Édouard Plessix,et al.  Resistivity imaging with controlled-source electromagnetic data: depth and data weighting , 2008 .

[95]  T. W. Spencer THE METHOD OF GENERALIZED REFLECTION AND TRANSMISSION COEFFICIENTS , 1960 .

[96]  Weng Cho Chew,et al.  A 3D perfectly matched medium from modified maxwell's equations with stretched coordinates , 1994 .

[97]  Jean Virieux,et al.  SH-wave propagation in heterogeneous media: velocity-stress finite-difference method , 1984 .

[98]  K. R. Kelly,et al.  SYNTHETIC SEISMOGRAMS: A FINITE ‐DIFFERENCE APPROACH , 1976 .

[99]  B. G. Mikhailenko,et al.  Numerical viscoelastic modelling by the spectral Laguerre method , 2003 .

[100]  D. Komatitsch,et al.  Spectral-element simulations of global seismic wave propagation: II. Three-dimensional models, oceans, rotation and self-gravitation , 2002 .

[101]  Marcus J. Grote,et al.  Discontinuous Galerkin Finite Element Method for the Wave Equation , 2006, SIAM J. Numer. Anal..

[102]  S. Gedney,et al.  On the long-time behavior of unsplit perfectly matched layers , 2004, IEEE Transactions on Antennas and Propagation.

[103]  S. Shapiro,et al.  Modeling the propagation of elastic waves using a modified finite-difference grid , 2000 .

[104]  Guy Chavent,et al.  Nonlinear Least Squares for Inverse Problems: Theoretical Foundations and Step-by-Step Guide for Applications , 2009 .

[105]  C. Mariotti,et al.  Lamb's problem with the lattice model Mka3D , 2007 .

[106]  Paul G. Richards,et al.  Quantitative Seismology: Theory and Methods , 1980 .

[107]  Johan O. A. Robertsson,et al.  An efficient method for calculating finite‐difference seismograms after model alterations , 1999 .

[108]  Alexander G. Ramm,et al.  Electromagnetic inverse problems with surface measurements at low frequencies , 1989 .

[109]  John T. Kuo,et al.  Transient time-domain electromagnetics , 1980 .

[110]  Gary Cohen Higher-Order Numerical Methods for Transient Wave Equations , 2001 .

[111]  O. Zienkiewicz,et al.  Finite elements and approximation , 1983 .

[112]  Arben Pitarka,et al.  3D Elastic Finite-Difference Modeling of Seismic Motion Using Staggered Grids with Nonuniform Spacing , 1999 .

[113]  Robert J. Geller,et al.  Complete synthetic seismograms for 3-D heterogeneous Earth models computed using modified DSM operators and their applicability to inversion for Earth structure , 2000 .

[114]  E. Baysal,et al.  Reverse time migration , 1983 .

[115]  T. Fouquet,et al.  Conservative space-time mesh refinement methods for the FDTD solution of Maxwell's equations , 2006 .

[116]  J. F. Clearbout Imaging the Earth's interior. , 1985 .

[117]  Cord Jastram,et al.  Elastic modelling on a grid with vertically varying spacing1 , 1994 .

[118]  Kenji Kawai,et al.  Complete synthetic seismograms up to 2 Hz for transversely isotropic spherically symmetric media , 2006 .

[119]  P. Moczo,et al.  The finite-difference time-domain method for modeling of seismic wave propagation , 2007 .

[120]  I. Štekl,et al.  Accurate viscoelastic modeling by frequency‐domain finite differences using rotated operators , 1998 .

[121]  P. Wannamaker,et al.  Three-dimensional magnetotelluric modeling using difference equations­ Theory and comparisons to integral equation solutions , 1993 .

[122]  Denes Vigh,et al.  3D prestack plane-wave, full-waveform inversion , 2008 .

[123]  Gerard T. Schuster,et al.  Parsimonious staggered grid finite‐differencing of the wave equation , 1990 .

[124]  A. T. Hoop,et al.  A modification of cagniard’s method for solving seismic pulse problems , 1960 .

[125]  R. Parker,et al.  Occam's inversion; a practical algorithm for generating smooth models from electromagnetic sounding data , 1987 .

[126]  A. Levander Fourth-order finite-difference P-SV seismograms , 1988 .

[127]  P. Roe Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes , 1997 .

[128]  N. Whitmore Iterative Depth Migration By Backward Time Propagation , 1983 .

[129]  Hiroyuki Fujiwara,et al.  3D finite-difference method using discontinuous grids , 1999, Bulletin of the Seismological Society of America.

[130]  Bernardo Cockburn Discontinuous Galerkin methods , 2003 .

[131]  S. Operto,et al.  lastic frequency-domain full-waveform inversion , 2009 .

[132]  C. Tsogka,et al.  Application of the perfectly matched absorbing layer model to the linear elastodynamic problem in anisotropic heterogeneous media , 2001 .

[133]  J. Coggon Electromagnetic and electrical modeling by the finite element method , 1971 .

[134]  Kerry Key,et al.  2D marine controlled-source electromagnetic modeling: Part 1 — An adaptive finite-element algorithm , 2007 .

[135]  Zhang Jianfeng,et al.  P–SV-wave propagation in heterogeneous media: grid method , 1999 .

[136]  Joakim O. Blanch,et al.  Viscoelastic finite-difference modeling , 1994 .

[137]  R. Hiptmair Finite elements in computational electromagnetism , 2002, Acta Numerica.

[138]  K. Marfurt Accuracy of finite-difference and finite-element modeling of the scalar and elastic wave equations , 1984 .

[139]  D. Komatitsch,et al.  An unsplit convolutional perfectly matched layer improved at grazing incidence for the seismic wave equation , 2007 .

[140]  J. Nédélec Mixed finite elements in ℝ3 , 1980 .

[141]  D. Komatitsch,et al.  The spectral element method: An efficient tool to simulate the seismic response of 2D and 3D geological structures , 1998, Bulletin of the Seismological Society of America.

[142]  C. H. Stoyer,et al.  Finite-difference calculations of the transient field of an axially symmetric Earth for vertical magnetic dipole excitation , 1983 .

[143]  G. Power,et al.  Approximate subsonic gas flows under assigned boundary conditions , 1959 .

[144]  Uri M. Ascher,et al.  Multigrid Preconditioning for Krylov Methods for Time-Harmonic Maxwell's Equations in Three Dimensions , 2002, SIAM J. Sci. Comput..

[145]  Ekkehart Tessmer,et al.  3-D elastic modeling with surface topography by a Chebychev spectral method , 1994 .

[146]  A. Pica,et al.  Nonliner inversion of seismic reflection data in a laterally invariant medium , 1990 .

[147]  Olav I. Barkved,et al.  Thematic Set: Full waveform inversion: the next leap forward in imaging at Valhall , 2010 .