NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET
暂无分享,去创建一个
[1] J. D. Lawson. Generalized Runge-Kutta Processes for Stable Systems with Large Lipschitz Constants , 1967 .
[2] I. N. Sneddon,et al. The Solution of Ordinary Differential Equations , 1987 .
[3] Elena Celledoni,et al. Commutator-free Lie group methods , 2003, Future Gener. Comput. Syst..
[4] J. Butcher. Numerical methods for ordinary differential equations in the 20th century , 2000 .
[5] C. Lubich,et al. On Krylov Subspace Approximations to the Matrix Exponential Operator , 1997 .
[6] Cleve B. Moler,et al. Nineteen Dubious Ways to Compute the Exponential of a Matrix, Twenty-Five Years Later , 1978, SIAM Rev..
[7] Rüdiger Weiner,et al. Behandlung steifer Anfangswertprobleme gewöhnlicher Differentialgleichungen mit adaptiven Runge-Kutta-Methoden , 1982, Computing.
[8] K. Burrage,et al. Non-linear stability of a general class of differential equation methods , 1980 .
[9] Brynjulf Owren,et al. B-series and Order Conditions for Exponential Integrators , 2005, SIAM J. Numer. Anal..
[10] Ya Yan Lu,et al. Computing a Matrix Function for Exponential Integrators , 2003 .
[11] Mari Paz Calvo,et al. A class of explicit multistep exponential integrators for semilinear problems , 2006, Numerische Mathematik.
[12] L. Tuckerman,et al. A method for exponential propagation of large systems of stiff nonlinear differential equations , 1989 .
[13] Y. Lu. Computing a matrix function for exponential integrators , 2003 .
[14] J. D. Lawson,et al. Generalized Runge-Kutta Processes for Stiff Initial-value Problems† , 1975 .
[15] Y. Saad. Krylov subspace methods for solving large unsymmetric linear systems , 1981 .
[16] Lloyd N. Trefethen,et al. Fourth-Order Time-Stepping for Stiff PDEs , 2005, SIAM J. Sci. Comput..
[17] S. P. Nørsett. An A-stable modification of the Adams-Bashforth methods , 1969 .
[18] A. Friedli. Verallgemeinerte Runge-Kutta Verfahren zur Loesung steifer Differentialgleichungssysteme , 1978 .
[19] Yousef Saad,et al. Efficient Solution of Parabolic Equations by Krylov Approximation Methods , 1992, SIAM J. Sci. Comput..
[20] Marlis Hochbruck,et al. Exponential Integrators for Large Systems of Differential Equations , 1998, SIAM J. Sci. Comput..
[21] HochbruckMarlis,et al. Explicit Exponential Runge-Kutta Methods for Semilinear Parabolic Problems , 2005 .
[22] S. Cox,et al. Exponential Time Differencing for Stiff Systems , 2002 .
[23] 角谷 典彦. M.Roseau, Asymptotic Wave Theory, North-Holland, Amsterdam and Oxford, 1976, x+349ページ, 23×16cm, 19,200円(North-Holland Series in Applied Mathematics and Mechanics). , 1977 .
[24] H. Munthe-Kaas. High order Runge-Kutta methods on manifolds , 1999 .
[25] J. M. Keiser,et al. A New Class of Time Discretization Schemes for the Solution of Nonlinear PDEs , 1998 .
[26] Jan Verwer,et al. An evaluation of explicit pseudo-steady-state approximation schemes for stiff ODE systems from chemical kinetics , 1993 .
[27] Marlis Hochbruck,et al. Explicit Exponential Runge-Kutta Methods for Semilinear Parabolic Problems , 2005, SIAM J. Numer. Anal..
[28] K. Strehmel,et al. Linear-implizite Runge-Kutta-Methoden und ihre Anwendung , 1992 .
[29] R. Weiner,et al. B-convergence results for linearly implicit one step methods , 1987 .
[30] B. V. Leer,et al. A quasi-steady state solver for the stiff ordinary differential equations of reaction kinetics , 2000 .
[31] A. Ostermann,et al. A Class of Explicit Exponential General Linear Methods , 2006 .
[32] Nicholas J. Higham,et al. INVERSE PROBLEMS NEWSLETTER , 1991 .
[33] S. Krogstad. Generalized integrating factor methods for stiff PDEs , 2005 .
[34] W. Wright,et al. The scaling and modified squaring method for matrix functions related to the exponential , 2009 .
[35] J. Lambert. Numerical Methods for Ordinary Differential Equations , 1991 .