NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET

Recently, a great deal of attention has been focused on the construction of exponential integrators for semilinear problems. In this article we describe a MATLAB1 package which aims to facilitate the quick deployment and testing of exponential integrators, of Runge--Kutta, multistep, and general linear type. A large number of integrators are included in this package along with several well-known examples. The so-called ϕ functions and their evaluation is crucial for accuracy, stability, and efficiency of exponential integrators, and the approach taken here is through a modification of the scaling and squaring technique, the most common approach used for computing the matrix exponential.

[1]  J. D. Lawson Generalized Runge-Kutta Processes for Stable Systems with Large Lipschitz Constants , 1967 .

[2]  I. N. Sneddon,et al.  The Solution of Ordinary Differential Equations , 1987 .

[3]  Elena Celledoni,et al.  Commutator-free Lie group methods , 2003, Future Gener. Comput. Syst..

[4]  J. Butcher Numerical methods for ordinary differential equations in the 20th century , 2000 .

[5]  C. Lubich,et al.  On Krylov Subspace Approximations to the Matrix Exponential Operator , 1997 .

[6]  Cleve B. Moler,et al.  Nineteen Dubious Ways to Compute the Exponential of a Matrix, Twenty-Five Years Later , 1978, SIAM Rev..

[7]  Rüdiger Weiner,et al.  Behandlung steifer Anfangswertprobleme gewöhnlicher Differentialgleichungen mit adaptiven Runge-Kutta-Methoden , 1982, Computing.

[8]  K. Burrage,et al.  Non-linear stability of a general class of differential equation methods , 1980 .

[9]  Brynjulf Owren,et al.  B-series and Order Conditions for Exponential Integrators , 2005, SIAM J. Numer. Anal..

[10]  Ya Yan Lu,et al.  Computing a Matrix Function for Exponential Integrators , 2003 .

[11]  Mari Paz Calvo,et al.  A class of explicit multistep exponential integrators for semilinear problems , 2006, Numerische Mathematik.

[12]  L. Tuckerman,et al.  A method for exponential propagation of large systems of stiff nonlinear differential equations , 1989 .

[13]  Y. Lu Computing a matrix function for exponential integrators , 2003 .

[14]  J. D. Lawson,et al.  Generalized Runge-Kutta Processes for Stiff Initial-value Problems† , 1975 .

[15]  Y. Saad Krylov subspace methods for solving large unsymmetric linear systems , 1981 .

[16]  Lloyd N. Trefethen,et al.  Fourth-Order Time-Stepping for Stiff PDEs , 2005, SIAM J. Sci. Comput..

[17]  S. P. Nørsett An A-stable modification of the Adams-Bashforth methods , 1969 .

[18]  A. Friedli Verallgemeinerte Runge-Kutta Verfahren zur Loesung steifer Differentialgleichungssysteme , 1978 .

[19]  Yousef Saad,et al.  Efficient Solution of Parabolic Equations by Krylov Approximation Methods , 1992, SIAM J. Sci. Comput..

[20]  Marlis Hochbruck,et al.  Exponential Integrators for Large Systems of Differential Equations , 1998, SIAM J. Sci. Comput..

[21]  HochbruckMarlis,et al.  Explicit Exponential Runge-Kutta Methods for Semilinear Parabolic Problems , 2005 .

[22]  S. Cox,et al.  Exponential Time Differencing for Stiff Systems , 2002 .

[23]  角谷 典彦 M.Roseau, Asymptotic Wave Theory, North-Holland, Amsterdam and Oxford, 1976, x+349ページ, 23×16cm, 19,200円(North-Holland Series in Applied Mathematics and Mechanics). , 1977 .

[24]  H. Munthe-Kaas High order Runge-Kutta methods on manifolds , 1999 .

[25]  J. M. Keiser,et al.  A New Class of Time Discretization Schemes for the Solution of Nonlinear PDEs , 1998 .

[26]  Jan Verwer,et al.  An evaluation of explicit pseudo-steady-state approximation schemes for stiff ODE systems from chemical kinetics , 1993 .

[27]  Marlis Hochbruck,et al.  Explicit Exponential Runge-Kutta Methods for Semilinear Parabolic Problems , 2005, SIAM J. Numer. Anal..

[28]  K. Strehmel,et al.  Linear-implizite Runge-Kutta-Methoden und ihre Anwendung , 1992 .

[29]  R. Weiner,et al.  B-convergence results for linearly implicit one step methods , 1987 .

[30]  B. V. Leer,et al.  A quasi-steady state solver for the stiff ordinary differential equations of reaction kinetics , 2000 .

[31]  A. Ostermann,et al.  A Class of Explicit Exponential General Linear Methods , 2006 .

[32]  Nicholas J. Higham,et al.  INVERSE PROBLEMS NEWSLETTER , 1991 .

[33]  S. Krogstad Generalized integrating factor methods for stiff PDEs , 2005 .

[34]  W. Wright,et al.  The scaling and modified squaring method for matrix functions related to the exponential , 2009 .

[35]  J. Lambert Numerical Methods for Ordinary Differential Equations , 1991 .