Recent Developments in Semiconductor Thermoelectric Physics and Materials

Recent advances in semiconductor thermoelectric physics and materials are reviewed. A key requirement to improve the energy conversion efficiency is to increase the Seebeck coefficient (S) and the electrical conductivity (σ) while reducing the electronic and lattice contributions to thermal conductivity (κe + κL). Some new physical concepts and nanostructures make it possible to modify the trade-offs between the bulk material properties through changes in the density of states, scattering rates, and interface effects on electron and phonon transport. We review recent experimental and theoretical results on nanostructured materials of various dimensions: superlattices, nanowires, nanodots, and solid-state thermionic power generation devices. Most of the recent success has been in the reduction of lattice thermal conductivity with the concurrent maintenance of good electrical conductivity. Several theoretical and experimental results to improve the thermoelectric power factor (S2σ) and to reduce the Lorenz ...

[1]  J. Bowers,et al.  High efficiency semimetal/semiconductor nanocomposite thermoelectric materials , 2010 .

[2]  A. Majumdar,et al.  High-temperature thermoelectric response of double-doped SrTiO3 epitaxial films , 2010, 1011.1882.

[3]  H. Linke,et al.  Thermoelectric efficiency at maximum power in low-dimensional systems , 2010, 1010.1375.

[4]  Kevin C. See,et al.  Water-processable polymer-nanocrystal hybrids for thermoelectrics. , 2010, Nano letters.

[5]  Weishu Liu,et al.  High-performance nanostructured thermoelectric materials , 2010 .

[6]  Ali Shakouri,et al.  Nanostructured Thermoelectrics: Big Efficiency Gains from Small Features , 2010, Advanced materials.

[7]  Ryoji Funahashi,et al.  Oxide Thermoelectric Materials: A Nanostructuring Approach , 2010 .

[8]  M. Kovalenko,et al.  Semiconductor nanocrystals functionalized with antimony telluride zintl ions for nanostructured thermoelectrics. , 2010, Journal of the American Chemical Society.

[9]  A. Tsukuda,et al.  Novel thermoelectric properties of complex transition-metal oxides. , 2010, Dalton transactions.

[10]  E. Hoffmann The thermoelectric efficiency of quantum dots in indium arsenide/indium phosphide nanowires , 2009 .

[11]  M. Kanatzidis,et al.  New and old concepts in thermoelectric materials. , 2009, Angewandte Chemie.

[12]  Mark S. Lundstrom,et al.  On momentum conservation and thermionic emission cooling , 2009, 0906.5157.

[13]  Rajeev J. Ram,et al.  Solar Thermoelectric Generator for Micropower Applications , 2009, Journal of Electronic Materials.

[14]  L. Voon,et al.  The k p Method: Electronic Properties of Semiconductors , 2009 .

[15]  Ali Shakouri,et al.  Direct measurement of thin-film thermoelectric figure of merit , 2009 .

[16]  J. Bowers,et al.  Effect of nanoparticle scattering on thermoelectric power factor , 2009 .

[17]  C. B. Vining An inconvenient truth about thermoelectrics. , 2009, Nature materials.

[18]  Timothy D. Sands,et al.  Thermal conductivity of (Zr,W)N/ScN metal/semiconductor multilayers and superlattices , 2009 .

[19]  R. Vullers,et al.  Wearable Thermoelectric Generators for Body-Powered Devices , 2009 .

[20]  M. Zebarjadi,et al.  Thermoelectric Transport in a ZrN/ScN Superlattice , 2009 .

[21]  H. Linke,et al.  Measuring temperature gradients over nanometer length scales. , 2009, Nano letters.

[22]  M. Plissonnier,et al.  "Nanoparticle-in-alloy" approach to efficient thermoelectrics: silicides in SiGe. , 2009, Nano letters.

[23]  Supriyo Datta,et al.  Influence of Dimensionality on Thermoelectric Device Performance , 2008, 0811.3632.

[24]  N. Mingo,et al.  Phonon transport in isotope-disordered carbon and boron-nitride nanotubes: is localization observable? , 2008, Physical review letters.

[25]  L. Bell Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems , 2008, Science.

[26]  G. J. Snyder,et al.  Enhancement of Thermoelectric Efficiency in PbTe by Distortion of the Electronic Density of States , 2008, Science.

[27]  M. Reason,et al.  Thermal transport in a semiconductor heterostructure measured by time-resolved x-ray diffraction , 2008 .

[28]  G. Mahan,et al.  Transport properties of quantum dot arrays , 2008 .

[29]  B. Shastry Electrothermal transport coefficients at finite frequencies , 2008, 0806.4629.

[30]  S. Mukerjee,et al.  Optimal thermoelectric figure of merit of a molecular junction , 2008, 0805.3374.

[31]  Gao Min,et al.  Multiple potential barriers as a possible mechanism to increase the Seebeck coefficient and electrical power factor , 2008 .

[32]  Engineering,et al.  Anomalously large measured thermoelectric power factor in Sr1−xLaxTiO3 thin films due to SrTiO3 substrate reduction , 2008, 0804.0443.

[33]  A. Majumdar,et al.  Enhanced Thermoelectric Performance in Rough Silicon Nanowires , 2008 .

[34]  S. Faleev,et al.  Theory of enhancement of thermoelectric properties of materials with nanoinclusions , 2008, 0807.0260.

[35]  E. Toberer,et al.  Complex thermoelectric materials. , 2008, Nature materials.

[36]  Deepak Srivastava,et al.  Phonon transmission through defects in carbon nanotubes from first principles , 2008 .

[37]  William A. Goddard,et al.  Silicon nanowires as efficient thermoelectric materials , 2008, Nature.

[38]  J. Bowers,et al.  Cross-plane Seebeck coefficient and Lorenz number in superlattices , 2007 .

[39]  M. Zebarjadi,et al.  Nonlinear Peltier effect in semiconductors , 2007 .

[40]  R. Funahashi,et al.  Fabrication and Application of an Oxide Thermoelectric System , 2007 .

[41]  Qiaoer Zhou,et al.  Maximum cooling temperature and uniform efficiency criterion for inhomogeneous thermoelectric materials , 2007 .

[42]  David J. Singh,et al.  Thermoelectric Properties of NaxCoO2 and Prospects for Other Oxide Thermoelectrics , 2007 .

[43]  M. R. Peterson,et al.  Thermoelectric effects in a strongly correlated model for Na x CoO 2 , 2007, 0705.3867.

[44]  R. Arita,et al.  "Pudding mold" band drives large thermopower in NaxCoO2 , 2007, 0705.3088.

[45]  M. Dresselhaus,et al.  New Directions for Low‐Dimensional Thermoelectric Materials , 2007 .

[46]  A. Majumdar,et al.  Thermoelectricity in Molecular Junctions , 2007, Science.

[47]  Li Shi,et al.  Four-probe measurements of the in-plane thermoelectric properties of nanofilms. , 2007, The Review of scientific instruments.

[48]  J. Bowers,et al.  Cross-plane Seebeck coefficient of ErAs:InGaAs∕InGaAlAs superlattices , 2007 .

[49]  Hideo Hosono,et al.  Giant thermoelectric Seebeck coefficient of a two-dimensional electron gas in SrTiO3. , 2007, Nature materials.

[50]  Paul Zschack,et al.  Ultralow Thermal Conductivity in Disordered, Layered WSe2 Crystals , 2007, Science.

[51]  Z. Bian,et al.  Beating the maximum cooling limit with graded thermoelectric materials , 2006 .

[52]  Ali Shakouri,et al.  Demonstration of electron filtering to increase the Seebeck coefficient in In0.53Ga0.47As/In0.53Ga0.28Al0.19As superlattices , 2006 .

[53]  A. Shakouri,et al.  Cross-plane Seebeck coefficient in superlattice structures in the miniband conduction regime , 2006 .

[54]  M. Zebarjadi,et al.  Thermoelectric transport perpendicular to thin-film heterostructures calculated using the Monte Carlo technique , 2006, cond-mat/0610056.

[55]  Ali Shakouri,et al.  Nanoscale Thermal Transport and Microrefrigerators on a Chip , 2006, Proceedings of the IEEE.

[56]  T. Sands,et al.  Growth of TiN∕GaN metal/semiconductor multilayers by reactive pulsed laser deposition , 2006 .

[57]  R. Funahashi,et al.  Power generation of p-type Ca3Co4O9/n-type CaMnO3 module , 2006, 2006 25th International Conference on Thermoelectrics.

[58]  J. Bowers,et al.  Cross-plane lattice and electronic thermal conductivities of ErAs:InGaAs∕InGaAlAs superlattices , 2006 .

[59]  Dmitri O. Klenov,et al.  Thermal conductivity reduction and thermoelectric figure of merit increase by embedding nanoparticles in crystalline semiconductors. , 2006, Physical review letters.

[60]  Ali Shakouri,et al.  Enhanced solid-state thermionic emission in nonplanar heterostructures , 2006 .

[61]  A. Bar-Cohen,et al.  Superlattice microrefrigerators fusion bonded with optoelectronic devices , 2005, IEEE Transactions on Components and Packaging Technologies.

[62]  J. Bowers,et al.  Demonstration of electron filtering to increase the Seebeck coefficient in ErAs:InGaAs/InGaAlAs superlattices , 2005, cond-mat/0510490.

[63]  Ali Shakouri,et al.  Thermoelectric power factor in semiconductors with buried epitaxial semimetallic nanoparticles , 2005 .

[64]  Z. Bian,et al.  Three-Dimensional Modeling of Nanoscale Seebeck Measurements by Scanning Thermoelectric Microscopy , 2005 .

[65]  Rama Venkatasubramanian,et al.  Enhanced thermoelectric performance in PbTe-based superlattice structures from reduction of lattice thermal conductivity , 2005 .

[66]  A. Shakouri,et al.  Thermoelectric, thermionic and thermophotovoltaic energy conversion , 2005, ICT 2005. 24th International Conference on Thermoelectrics, 2005..

[67]  A. Stacy,et al.  Measurement of thermoelectric nanowire array properties , 2005, ICT 2005. 24th International Conference on Thermoelectrics, 2005..

[68]  T. Humphrey,et al.  The effect of the electron energy spectrum on electronic efficiency and power in thermionic and thermoelectric devices , 2005, ICT 2005. 24th International Conference on Thermoelectrics, 2005..

[69]  Heiner Linke,et al.  Power optimization in thermionic devices , 2005 .

[70]  Donald T. Morelli,et al.  Thermopower Enhancement in PbTe with Pb Precipitates , 2005 .

[71]  R. Lewis,et al.  Solid-state thermionics and thermoelectrics in the ballistic transport regime , 2005, cond-mat/0502078.

[72]  Natalio Mingo,et al.  Thermoelectric figure of merit and maximum power factor in III–V semiconductor nanowires , 2004 .

[73]  Ali Shakouri,et al.  Improved thermoelectric power factor in metal-based superlattices. , 2004, Physical review letters.

[74]  A. Shakouri,et al.  Nanoscale devices for solid state refrigeration and power generation , 2004, Twentieth Annual IEEE Semiconductor Thermal Measurement and Management Symposium (IEEE Cat. No.04CH37545).

[75]  Li Shi,et al.  Profiling the Thermoelectric Power of Semiconductor Junctions with Nanometer Resolution , 2004, Science.

[76]  Ali Shakouri,et al.  Electronic and thermoelectric transport in semiconductor and metallic superlattices , 2004 .

[77]  G. J. Snyder,et al.  Thermoelectric efficiency and compatibility. , 2003, Physical review letters.

[78]  Li Shi,et al.  Measuring Thermal and Thermoelectric Properties of One-Dimensional Nanostructures Using a Microfabricated Device , 2003 .

[79]  C. M. Thrush,et al.  Resistance, magnetoresistance, and thermopower of zinc nanowire composites. , 2003, Physical review letters.

[80]  Yu-Ming Lin,et al.  Thermoelectric properties of superlattice nanowires , 2003 .

[81]  S. Datta,et al.  Thermoelectric effect in molecular electronics , 2003, cond-mat/0301232.

[82]  M. P. Walsh,et al.  Quantum Dot Superlattice Thermoelectric Materials and Devices , 2002, Science.

[83]  Rajeev J Ram,et al.  Bias-dependent Peltier coefficient and internal cooling in bipolar devices , 2002 .

[84]  Ali Shakouri,et al.  Heat Transfer in Nanostructures for Solid-State Energy Conversion , 2002 .

[85]  Ali Shakouri,et al.  Thermal conductivity of Si/SiGe and SiGe/SiGe superlattices , 2002 .

[86]  M. Dresselhaus,et al.  Chapter 1 Quantum wells and quantum wires for potential thermoelectric applications , 2001 .

[87]  R. Venkatasubramanian,et al.  Thin-film thermoelectric devices with high room-temperature figures of merit , 2001, Nature.

[88]  M. D. Ulrich,et al.  Comparison of solid-state thermionic refrigeration with thermoelectric refrigeration , 2001 .

[89]  Ali Shakouri,et al.  Design and characterization of thin film microcoolers , 2001 .

[90]  Ali Shakouri,et al.  SiGeC/Si superlattice microcoolers , 2001 .

[91]  Ali Shakouri,et al.  Monolithic integration of thin-film coolers with optoelectronic devices , 2000 .

[92]  S. Maekawa,et al.  Thermopower in cobalt oxides , 2000 .

[93]  Ali Shakouri,et al.  THERMAL CONDUCTIVITY OF INDIUM PHOSPHIDE-BASED SUPERLATTICES , 2000 .

[94]  R. Venkatasubramanian Lattice thermal conductivity reduction and phonon localizationlike behavior in superlattice structures , 2000 .

[95]  Cronin B. Vining,et al.  The B factor in multilayer thermionic refrigeration , 1999 .

[96]  J.C. Bass,et al.  Milliwatt radioisotope power supply for space applications , 1999, Eighteenth International Conference on Thermoelectrics. Proceedings, ICT'99 (Cat. No.99TH8407).

[97]  A. Shakouri,et al.  Thermoelectric power factor for electrically conductive polymers , 1999, Eighteenth International Conference on Thermoelectrics. Proceedings, ICT'99 (Cat. No.99TH8407).

[98]  Christoph H. Grein,et al.  Multilayer thermoelectric refrigeration in Hg1−xCdxTe superlattices , 1999 .

[99]  Rama Venkatasubramanian,et al.  Low-temperature organometallic epitaxy and its application to superlattice structures in thermoelectrics , 1999 .

[100]  D. Bergman,et al.  Enhancement of thermoelectric power factor in composite thermoelectrics , 1999, Eighteenth International Conference on Thermoelectrics. Proceedings, ICT'99 (Cat. No.99TH8407).

[101]  Ali Shakouri,et al.  Thermionic emission cooling in single barrier heterostructures , 1999 .

[102]  G. Mahan,et al.  Multilayer thermionic refrigeration , 1998, Eighteenth International Conference on Thermoelectrics. Proceedings, ICT'99 (Cat. No.99TH8407).

[103]  J. Bowers,et al.  Thermoelectric effects in submicron heterostructure barriers , 1998 .

[104]  G. Mahan,et al.  Multilayer thermionic refrigerator and generator , 1998, cond-mat/9801187.

[105]  Ichiro Terasaki,et al.  Large thermoelectric power in NaCo 2 O 4 single crystals , 1997 .

[106]  Ali Shakouri,et al.  Heterostructure integrated thermionic coolers , 1997 .

[107]  G. Mahan,et al.  The best thermoelectric. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[108]  G. A. Slack,et al.  The effect of rare‐earth filling on the lattice thermal conductivity of skutterudites , 1996 .

[109]  B. Moyzhes,et al.  Possible ways for efficiency improvement of thermoelectric materials , 1996, Fifteenth International Conference on Thermoelectrics. Proceedings ICT '96.

[110]  T. Hirano,et al.  SUPERLATTICE APPLICATIONS TO THERMOELECTRICITY , 1995 .

[111]  D. Rowe CRC Handbook of Thermoelectrics , 1995 .

[112]  Broido Da,et al.  Effect of superlattice structure on the thermoelectric figure of merit. , 1995 .

[113]  Jorge O. Sofo,et al.  Thermoelectric figure of merit of superlattices , 1994 .

[114]  Mahan,et al.  Optimum band gap of a thermoelectric material. , 1994, Physical review. B, Condensed matter.

[115]  Mildred S. Dresselhaus,et al.  Effect of quantum-well structures on the thermoelectric figure of merit. , 1993, Physical review. B, Condensed matter.

[116]  D. J. Bergman,et al.  Thermoelectric properties of a composite medium , 1991 .

[117]  Gerald D. Mahan,et al.  Figure of merit for thermoelectrics , 1989 .

[118]  A. Gossard,et al.  Selective Transmission of High-Frequency Phonons by a Superlattice: The , 1979 .

[119]  R. Stratton,et al.  The Thermoelectric Figure of Merit and its Relation to Thermoelectric Generators , 1959 .

[120]  G. Vineyard,et al.  Semiconductor Thermoelements and Thermoelectric Cooling , 1957 .

[121]  H. Casimir Note on the conduction of heat in crystals , 1938 .

[122]  Ali Shakouri,et al.  Energy Payback Optimization of Thermoelectric Power Generator Systems , 2010 .

[123]  M. Zebarjadi,et al.  Nanoengineered Materials for Thermoelectric Energy Conversion , 2009 .

[124]  Z. Bian,et al.  Monte Carlo Simulation of Solid-State Thermionic Energy Conversion Devices Based on Non-Planar Heterostructure Interfaces , 2006 .

[125]  Gang Chen,et al.  Thermal Conductivity of Nanostructured Thermoelectric Materials , 2006 .

[126]  A. Casian Thermoelectric Properties of Electrically Conducting Organic Materials , 2005 .

[127]  G. Chen,et al.  Chapter 5 - Phonon Transport in Low-Dimensional Structures , 2001 .

[128]  G. Mahan Chapter 3 - Thermionic Refrigeration , 2001 .

[129]  A. Shakouri,et al.  Conservation of Lateral Momentum in Heterostructure Integrated Thermionic Coolers , 2001 .

[130]  G. Nolas,et al.  Thermoelectrics: Basic Principles and New Materials Developments , 2001 .

[131]  R. Venkatasubramanian Chapter 4 - Phonon Blocking Electron Transmitting Superlattice Structures as Advanced Thin Film Thermoelectric Materials , 2001 .

[132]  Ali Shakouri,et al.  Enhanced Thermionic Emission Cooling in High Barrier Superlattice Heterostructures , 1998 .

[133]  C. B. Vining The Thermoelectric Process , 1997 .

[134]  H. J. Goldsmid,et al.  Thermoelectric Refrigeration , 1964 .

[135]  William Thomson,et al.  4. On a Mechanical Theory of Thermo-Electric Currents , 1857 .