Numerical simulation and experimental study of hydrogen production from dimethyl ether steam reforming in a micro-reactor

[1]  Brant A. Peppley,et al.  Hydrogen production by steam reforming of methanol for polymer electrolyte fuel cells , 1994 .

[2]  Brant A. Peppley,et al.  Methanol–steam reforming on Cu/ZnO/Al2O3. Part 1: the reaction network , 1999 .

[3]  Brant A. Peppley,et al.  Methanol–steam reforming on Cu/ZnO/Al2O3 catalysts. Part 2. A comprehensive kinetic model , 1999 .

[4]  G. Froment,et al.  Kinetic Modeling of the Methanol to Olefins Process. 2. Experimental Results, Model Discrimination, and Parameter Estimation , 2001 .

[5]  G. Froment,et al.  Kinetic Modeling of the Methanol to Olefins Process. 1. Model Formulation , 2001 .

[6]  R. Borup,et al.  Role of acidity on the hydrolysis of dimethyl ether (DME) to methanol , 2005 .

[7]  Dimos Poulikakos,et al.  Effects of microreactor wall heat conduction on the reforming process of methane , 2005 .

[8]  H. Shioyama,et al.  A novel DME steam-reforming catalyst designed with fact database on-demand , 2006 .

[9]  Yan Tian,et al.  Steam reforming of dimethyl ether over ZSM-5 coupled with Cu/ZnO/Al2O3 catalyst prepared by homogeneous precipitation , 2006 .

[10]  C. Grigoropoulos,et al.  A study of steam methanol reforming in a microreactor , 2007 .

[11]  R. Kikuchi,et al.  Deactivation and regeneration behaviors of copper spinel–alumina composite catalysts in steam reforming of dimethyl ether , 2008 .

[12]  Kwan-Young Lee,et al.  Hydrogen production from a DME reforming-membrane reactor using stainless steel-supported Knudsen membranes with high permeability , 2008 .

[13]  Influence of Solid Acid Catalysts on Steam Reforming of Dimethyl Ether for Hydrogen Production , 2009 .

[14]  Dezheng Wang,et al.  Steam Reforming of Dimethyl Ether over Coupled ZSM-5 and Cu-Zn-Based Catalysts , 2009 .

[15]  Dezheng Wang,et al.  Steam reforming of dimethyl ether over CuO–ZnO–Al2O3–ZrO2 + ZSM-5: A kinetic study , 2009 .

[16]  J. Chung,et al.  Numerical Simulation of Flow Disturbance and Heat Transfer Effects on the Methanol-Steam Reforming in Miniature Annulus Type Reformers , 2012 .

[17]  A. Masri,et al.  Catalytic combustion of selected hydrocarbon fuels on platinum: Reactivity and hetero-homogeneous interactions , 2012 .

[18]  Pingqing Fan,et al.  Numerical analysis and experimental study of hydrogen production from dimethyl ether steam reforming , 2012, Science China Chemistry.

[19]  Rashmi Chaubey,et al.  A review on development of industrial processes and emerging techniques for production of hydrogen from renewable and sustainable sources , 2013 .

[20]  Jacob N. Chung,et al.  Numerical study of methanol–steam reforming and methanol–air catalytic combustion in annulus reactors for hydrogen production , 2013 .

[21]  H. Alves,et al.  Overview of hydrogen production technologies from biogas and the applications in fuel cells , 2013 .

[22]  Numerical predictions of design and operating parameters of reformer on the fuel conversion and CO production for the steam reforming of methanol , 2013 .