Approximate basket option valuation for a simplified jump process

This study proposes the use of a simplified jump process, namely the Bernoulli jump process, to develop approximate basket option valuation formulas. The proposed model is based on a more realistic stochastic process—relative to the standard geometric Brownian motion—without introducing additional intractability. Typical approximations, necessary for the development of the closed form formulas, are validated on the basis of a Monte Carlo experiment. © 2007 Wiley Periodicals, Inc. Jrl Fut Mark 27:819–837, 2007

[1]  S. Posner,et al.  Asian Options, The Sum Of Lognormals, And The Reciprocal Gamma Distribution , 1998 .

[2]  David S. Bates Dollar jump fears, 1984–1992: distributional abnormalities implicit in currency futures options , 1996 .

[3]  Stephen L Taylor,et al.  MODELING STOCHASTIC VOLATILITY: A REVIEW AND COMPARATIVE STUDY , 1994 .

[4]  M. Rockinger,et al.  Reading the Smile: The Message Conveyed by Methods Which Infer Risk Neutral Densities , 1997 .

[5]  Tie Su,et al.  Implied Volatility Skews and Stock Index Skewness and Kurtosis Implied by S&P 500 Index Option Prices , 1997 .

[6]  R. Barakat Sums of independent lognormally distributed random variables , 1976 .

[7]  Luca Benzoni,et al.  An Empirical Investigation of Continuous-Time Equity Return Models , 2001 .

[8]  Nengjiu Ju Pricing Asian and basket options via Taylor expansion , 2002 .

[9]  Edmond Levy Pricing European average rate currency options , 1992 .

[10]  W. Torous,et al.  A Simplified Jump Process for Common Stock Returns , 1983, Journal of Financial and Quantitative Analysis.

[11]  R. C. Merton,et al.  Option pricing when underlying stock returns are discontinuous , 1976 .

[12]  F. Black,et al.  The Pricing of Options and Corporate Liabilities , 1973, Journal of Political Economy.

[13]  R. Jarrow,et al.  APPROXIMATE OPTION VALUATION FOR ARBITRARY STOCHASTIC PROCESSES , 1982 .

[14]  David S. Bates Empirical option pricing: a retrospection , 2003 .

[15]  S. Posner,et al.  A Closed-Form Approximation for Valuing Basket Options , 1998 .

[16]  Georges Dionne,et al.  Heterogeneous Basket Options Pricing Using Analytical Approximations , 2006 .

[17]  W. Torous,et al.  On Jumps in Common Stock Prices and Their Impact on Call Option Pricing , 1985 .

[18]  William A. Janos,et al.  Tail of the distribution of sums of log-normal variates , 1970, IEEE Trans. Inf. Theory.

[19]  S. Ross,et al.  The valuation of options for alternative stochastic processes , 1976 .

[20]  Jun Pan The jump-risk premia implicit in options: evidence from an integrated time-series study $ , 2002 .

[21]  Allan M. Malz Using option prices to estimate realignment probabilities in the European Monetary System: the case of sterling-mark , 1996 .

[22]  L. Fenton The Sum of Log-Normal Probability Distributions in Scatter Transmission Systems , 1960 .

[23]  David S. Bates The Crash of ʼ87: Was It Expected? The Evidence from Options Markets , 1991 .