Weighted $p$ -Bits for FPGA Implementation of Probabilistic Circuits

Probabilistic spin logic is a recently proposed computing paradigm based on unstable stochastic units called probabilistic bits (<inline-formula> <tex-math notation="LaTeX">$p$ </tex-math></inline-formula>-bits) that can be correlated to form probabilistic circuits (p-circuits). These p-circuits can be used to solve the problems of optimization, inference, and implement precise Boolean functions in an “inverted” mode, where a given Boolean circuit can operate in reverse to find the input combinations that are consistent with a given output. In this brief, we present a scalable field-programmable gate array implementation of such invertible p-circuits. We implement a “weighted” <inline-formula> <tex-math notation="LaTeX">$p$ </tex-math></inline-formula>-bit that combines stochastic units with localized memory structures. We also present a generalized tile of weighted <inline-formula> <tex-math notation="LaTeX">$p$ </tex-math></inline-formula>-bits to which a large class of problems beyond invertible Boolean logic can be mapped and how invertibility can be applied to interesting problems such as the NP-complete subset sum problem by solving a small instance of this problem in hardware.

[1]  Supriyo Datta,et al.  Implementing p-bits With Embedded MTJ , 2017, IEEE Electron Device Letters.

[2]  Geoffrey E. Hinton,et al.  Reducing the Dimensionality of Data with Neural Networks , 2006, Science.

[3]  Kazuyuki Aihara,et al.  A fully programmable 100-spin coherent Ising machine with all-to-all connections , 2016, Science.

[4]  Denis Navarro,et al.  Simulating spin systems on IANUS, an FPGA-based computer , 2007, Comput. Phys. Commun..

[5]  Brian M. Sutton,et al.  Stochastic p-bits for Invertible Logic , 2016, 1610.00377.

[6]  Hitoshi Kubota,et al.  Magnetic Stochastic Oscillators: Noise-Induced Synchronization to Underthreshold Excitation and Comprehensive Compact Model , 2015, IEEE Transactions on Magnetics.

[7]  J. Biamonte Non−perturbative k−body to two−body commuting conversion Hamiltonians and embedding problem instances into Ising spins , 2008, 0801.3800.

[8]  Catherine D. Schuman,et al.  A Survey of Neuromorphic Computing and Neural Networks in Hardware , 2017, ArXiv.

[9]  Matti Tommiska,et al.  Efficient digital implementation of the sigmoid function for reprogrammable logic , 2003 .

[10]  Sumio Hosaka,et al.  Associative memory realized by a reconfigurable memristive Hopfield neural network , 2015, Nature Communications.

[11]  Massimiliano Di Ventra,et al.  Polynomial-time solution of prime factorization and NP-hard problems with digital memcomputing machines , 2015, Chaos.

[12]  Ken-ichi Kawarabayashi,et al.  A coherent Ising machine for 2000-node optimization problems , 2016, Science.

[13]  Geoffrey E. Hinton,et al.  A Learning Algorithm for Boltzmann Machines , 1985, Cogn. Sci..

[14]  S. Datta,et al.  Low-Barrier Nanomagnets as p-Bits for Spin Logic , 2016, IEEE Magnetics Letters.

[15]  Rizvi Ahmed,et al.  Size and voltage dependence of effective anisotropy in sub-100-nm perpendicular magnetic tunnel junctions , 2016 .

[16]  Damien Querlioz,et al.  Spintronic Nanodevices for Bioinspired Computing , 2016, Proceedings of the IEEE.

[17]  Marcelo A. Montemurro,et al.  FPGA Hardware Acceleration of Monte Carlo Simulations for the Ising Model , 2016, IEEE Transactions on Parallel and Distributed Systems.

[18]  Xin-She Yang,et al.  Introduction to Algorithms , 2021, Nature-Inspired Optimization Algorithms.

[19]  Supriyo Datta,et al.  A building block for hardware belief networks , 2016, Scientific Reports.

[20]  Supriyo Datta,et al.  Intrinsic optimization using stochastic nanomagnets , 2016, Scientific Reports.

[21]  Hiroshi Imamura,et al.  Spin dice: A scalable truly random number generator based on spintronics , 2014 .

[22]  Massimiliano Di Ventra,et al.  Experimental demonstration of associative memory with memristive neural networks , 2009, Neural Networks.

[23]  Vicky Choi,et al.  Minor-embedding in adiabatic quantum computation: II. Minor-universal graph design , 2010, Quantum Inf. Process..

[24]  Tafsir Thiam,et al.  The Boltzmann machine , 1999, IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339).

[25]  Chris H. Kim,et al.  A Magnetic Tunnel Junction based True Random Number Generator with conditional perturb and real-time output probability tracking , 2014, 2014 IEEE International Electron Devices Meeting.

[26]  Jaijeet S. Roychowdhury,et al.  Oscillator-based Ising Machine , 2017, ArXiv.

[27]  Hiroyuki Mizuno,et al.  A 20k-Spin Ising Chip to Solve Combinatorial Optimization Problems With CMOS Annealing , 2016, IEEE Journal of Solid-State Circuits.

[28]  Vincent Gripon,et al.  A Nonvolatile Associative Memory-Based Context-Driven Search Engine Using 90 nm CMOS/MTJ-Hybrid Logic-in-Memory Architecture , 2014, IEEE Journal on Emerging and Selected Topics in Circuits and Systems.

[29]  Supriyo Datta,et al.  Hardware emulation of stochastic p-bits for invertible logic , 2017, Scientific Reports.

[30]  Denis Navarro,et al.  Janus: An FPGA-Based System for High-Performance Scientific Computing , 2007, Computing in Science & Engineering.

[31]  Masanao Yamaoka,et al.  FPGA-based Annealing Processor for Ising Model , 2016, 2016 Fourth International Symposium on Computing and Networking (CANDAR).

[32]  Daniel A. Lidar,et al.  Quantum annealing correction with minor embedding , 2015, 1507.02658.

[33]  Yee Whye Teh,et al.  A Fast Learning Algorithm for Deep Belief Nets , 2006, Neural Computation.