Shear Deformation Plate and Shell Theories: From Stavsky to Present

ABSTRACT In this paper, a review of the shear deformation plate and shell theories is presented and a consistent third-order theory for composite shells is proposed. The discussion of plate and shell theories from Stavsky to the present is largely a review of various theories for modeling laminated shells, including shear effects and some analytical studies. Following this discussion, a finite element formulation of the proposed theory is developed. The formulation has seven displacement functions satisfying the tangential traction-free conditions on the inner and outer surfaces of the shell. Exact computations of stress resultants are carried out through numerical integration of material stiffness coefficients of the laminate. Numerical examples are presented for typical benchmark problems involving isotropic and composite plates, and cylindrical and spherical shells.

[1]  J. Whitney,et al.  Shear Deformation in Heterogeneous Anisotropic Plates , 1970 .

[2]  Charles W. Bert,et al.  Effect of shear deformation on vibration of antisymmetric angle-ply laminated rectangular plates , 1978 .

[3]  Sunil Saigal,et al.  Advances of thin shell finite elements and some applications—version I , 1990 .

[4]  J N Reddy Analysis of Layered Composite Plates Accounting for Large Deflections and Transverse Shear Strains. , 1981 .

[5]  N. J. Pagano,et al.  Elastic Behavior of Multilayered Bidirectional Composites , 1972 .

[6]  Wilfried B. Krätzig,et al.  ‘Best’ transverse shearing and stretching shell theory for nonlinear finite element simulations , 1993 .

[7]  G R Heppler,et al.  A Mindlin element for thick and deep shells , 1986 .

[8]  J. Whitney,et al.  The Effect of Transverse Shear Deformation on the Bending of Laminated Plates , 1969 .

[9]  J. N. Reddy,et al.  Analytical solutions of refined plate theories of cross-ply composite laminates , 1991 .

[10]  E. Ramm,et al.  Shear deformable shell elements for large strains and rotations , 1997 .

[11]  W. Flügge Stresses in Shells , 1960 .

[12]  Rüdiger Schmidt,et al.  Finite elements based on a first-order shear deformation moderate rotation shell theory with applications to the analysis of composite structures , 1997 .

[13]  L. Librescu,et al.  Postbuckling of Shear Deformable Composite Flat Panels Taking Into Account Geometrical Imperfections , 1990 .

[14]  K. H. Lee,et al.  An improved zig-zag model for the bending of laminated composite shells , 1990 .

[15]  Marco Di Sciuva,et al.  A refined transverse shear deformation theory for multilayered anisotropic plates. , 1984 .

[16]  K. Bathe,et al.  A continuum mechanics based four‐node shell element for general non‐linear analysis , 1984 .

[17]  A. K. Rath,et al.  Vibration and Buckling of Cross-Ply Laminated Circular Cylindrical Panels , 1975 .

[18]  E. Ramm,et al.  Three‐dimensional extension of non‐linear shell formulation based on the enhanced assumed strain concept , 1994 .

[19]  S. Srinivas,et al.  Flexure of rectangular composite plates , 1975 .

[20]  Liviu Librescu,et al.  Imperfection sensitivity and postbuckling behavior of shear-deformable composite doubly-curved shallow panels , 1992 .

[21]  Heinrich Rothert,et al.  A solution of laminated cylindrical shells using an unconstrained third-order theory , 1995 .

[22]  Maenghyo Cho,et al.  Development of geometrically exact new shell elements based on general curvilinear co‐ordinates , 2003 .

[23]  P. M. Naghdi,et al.  On the Derivation of Shell Theories by Direct Approach , 1974 .

[24]  Janusz Badur,et al.  Finite rotations in the description of continuum deformation , 1983 .

[25]  P. M. Naghdi,et al.  FOUNDATIONS OF ELASTIC SHELL THEORY , 1962 .

[26]  P. M. Naghdi,et al.  The Theory of Shells and Plates , 1973 .

[27]  Y. Stavsky,et al.  Elastic wave propagation in heterogeneous plates , 1966 .

[28]  J. C. Simo,et al.  On a stress resultant geometrically exact shell model. Part III: computational aspects of the nonlinear theory , 1990 .

[29]  Liviu Librescu,et al.  Refined geometrically nonlinear theories of anisotropic laminated shells , 1987 .

[30]  George J. Simitses,et al.  Shear deformable theories for cylindrical laminates - Equilibrium and buckling with applications , 1992 .

[31]  J. C. Simo,et al.  On a stress resultant geometrically exact shell model. Part II: the linear theory; computational aspects , 1989 .

[32]  Wojciech Pietraszkiewicz,et al.  Lagrangian description and incremental formulation in the non-linear theory of thin shells , 1984 .

[33]  J. B. Greenberg,et al.  Buckling of composite orthotropic cylindrical shells under non-uniform axial loads , 1995 .

[34]  O. C. Zienkiewicz,et al.  Reduced integration technique in general analysis of plates and shells , 1971 .

[35]  J. C. Simo,et al.  On a stress resultant geometrically exact shell model , 1990 .

[36]  Dr.-Ing. C. Sansour A Theory and finite element formulation of shells at finite deformations involving thickness change , 1995 .

[37]  N. Pagano,et al.  Exact Solutions for Composite Laminates in Cylindrical Bending , 1969 .

[38]  J. N. Reddy,et al.  Layer-wise shell theory for postbuckling of laminated circular cylindrical shells , 1992 .

[39]  Carlo Sansour,et al.  A theory and finite element formulation of shells at finite deformations involving thickness change: Circumventing the use of a rotation tensor , 1995, Archive of Applied Mechanics.

[40]  C. Sun,et al.  A higher order theory for extensional motion of laminated composites , 1973 .

[41]  Rakesh K. Kapania,et al.  A Review on the Analysis of Laminated Shells Virginia Polytechnic Institute and State University , 1989 .

[42]  A. Rao,et al.  Bending, vibration and buckling of simply supported thick orthotropic rectangular plates and laminates , 1970 .

[43]  Y. Başar,et al.  Finite-rotation theories for composite laminates , 1993 .

[44]  Carlo Sansour,et al.  The Cosserat surface as a shell model, theory and finite-element formulation , 1995 .

[45]  J. Reddy A Simple Higher-Order Theory for Laminated Composite Plates , 1984 .

[46]  J. Reddy,et al.  Consistent Third-Order Shell Theory with Application to Composite Cylindrical Cylinders , 2005 .

[47]  J. N. Reddy,et al.  A higher-order shear deformation theory of laminated elastic shells , 1985 .

[48]  M. D. Sciuva,et al.  BENDING, VIBRATION AND BUCKLING OF SIMPLY SUPPORTED THICK MULTILAYERED ORTHOTROPIC PLATES: AN EVALUATION OF A NEW DISPLACEMENT MODEL , 1986 .

[49]  L. Della Croce,et al.  Hierarchic finite elements for thin Naghdi shell model , 1998 .

[50]  Boštjan Brank,et al.  Nonlinear shell problem formulation accounting for through-the-thickness stretching and its finite element implementation , 2002 .

[51]  J. E. Gibson,et al.  Computer analyses of cylinderical shells : design tables for cylindrical shell roofs calculated by automatic digital computer , 1961 .

[52]  D. Cooper,et al.  The design of cylindrical shell roofs , 1954 .

[53]  J. N. Reddy,et al.  Buckling and vibration of laminated composite plates using various plate theories , 1989 .

[54]  Rüdiger Schmidt,et al.  Refined theories of elastic anisotropic shells accounting for small strains and moderate rotations , 1988 .

[55]  S. Srinivas,et al.  An exact analysis for vibration of simply-supported homogeneous and laminated thick rectangular plates , 1970 .

[56]  Liviu Librescu,et al.  Elastostatics and Kinetics of Anisotropic and Heterogeneous Shell-Type Structures , 1975 .

[57]  Yavuz Başar,et al.  Refined shear-deformation models for composite laminates with finite rotations , 1993 .

[58]  Ekkehard Ramm,et al.  Nonlinear shell formulations for complete three-dimensional constitutive laws including composites and laminates , 1994 .

[59]  D. E. McFarland,et al.  Analysis of plates , 1972 .

[60]  R. Fortier,et al.  On the Vibration of Shear Deformable Curved Anisotropic Composite Plates , 1973 .

[61]  D. Roylance INTRODUCTION TO COMPOSITE MATERIALS , 2000 .

[62]  Clifford Ambrose Truesdell,et al.  Exact theory of stress and strain in rods and shells , 1957 .

[63]  Y. Stavsky,et al.  Refined theory for vibrations and buckling of laminated isotropic annular plates , 1996 .

[64]  E. Ramm,et al.  On the physical significance of higher order kinematic and static variables in a three-dimensional shell formulation , 2000 .

[65]  N. N. Huang,et al.  Influence of shear correction factors in the higher order shear deformation laminated shell theory , 1994 .

[66]  J. N. Reddy,et al.  Mixed plate bending elements based on least‐squares formulation , 2004 .

[67]  J. C. Simo,et al.  On stress resultant geometrically exact shell model. Part I: formulation and optimal parametrization , 1989 .

[68]  Yavuz Başar A consistent theory of geometrically non-linear shells with an independent rotation vector , 1987 .

[69]  J. L. Sanders,et al.  Theory of thin elastic shells , 1982 .

[70]  J. Chróścielewski,et al.  Genuinely resultant shell finite elements accounting for geometric and material non-linearity , 1992 .

[71]  F. B. Hildebrand,et al.  Notes on the foundations of the theory of small displacements of orthotropic shells , 1949 .

[72]  Rakesh K. Kapania,et al.  A survey of recent shell finite elements , 2000 .

[73]  J. Reddy Mechanics of laminated composite plates and shells : theory and analysis , 1996 .

[74]  R. A. Shenoi,et al.  Free vibration analysis of composite sandwich plates based on Reddy's higher-order theory , 2002 .

[75]  T. K. Varadan,et al.  Bending of laminated orthotropic cylindrical shells—An elasticity approach , 1991 .

[76]  P. M. Naghdi,et al.  A general theory of a Cosserat surface , 1965 .

[77]  Sritawat Kitipornchai,et al.  Influence of imperfect interfaces on bending and vibration of laminated composite shells , 2000 .

[78]  J. N. Reddy,et al.  On refined computational models of composite laminates , 1989 .

[79]  J. N. Reddy,et al.  A generalization of two-dimensional theories of laminated composite plates† , 1987 .

[80]  C. Sun,et al.  Theories for the Dynamic Response of Laminated Plates , 1973 .

[81]  Y. Stavsky,et al.  Refined theory for non-linear buckling of heated composite shallow spherical shells , 1995 .

[82]  J. N. Reddy,et al.  On a moderate rotation theory of laminated anisotropic shells—Part 1. Theory☆ , 1990 .

[83]  E. Reissner,et al.  Stress Strain Relations in the Theory of Thin Elastic Shells , 1952 .

[84]  M. Di Sciuva,et al.  An Improved Shear-Deformation Theory for Moderately Thick Multilayered Anisotropic Shells and Plates , 1987 .

[85]  R. L. Harder,et al.  A proposed standard set of problems to test finite element accuracy , 1985 .

[86]  Hamdan N. Al-Ghamedy,et al.  Finite element formulation of a third order laminated finite rotation shell element , 2002 .

[87]  Rüdiger Schmidt,et al.  A Refined Small Strain and Moderate Rotation Theory of Elastic Anisotropic Shells , 1988 .

[88]  J. Ren,et al.  Exact solutions for laminated cylindrical shells in cylindrical bending , 1987 .

[89]  E. Hinton,et al.  A family of quadrilateral Mindlin plate elements with substitute shear strain fields , 1986 .

[90]  N. Pagano,et al.  Exact Solutions for Rectangular Bidirectional Composites and Sandwich Plates , 1970 .

[91]  R. W. Clough,et al.  A curved, cylindrical-shell, finite element. , 1968 .

[92]  T. Belytschko,et al.  Membrane Locking and Reduced Integration for Curved Elements , 1982 .

[93]  J. Whitney,et al.  The Effect of Boundary Conditions on the Response of Laminated Composites , 1970 .