Ontology Integration for the Linked Open Data

The Linked Open Data (LOD) cloud contains tremendous amounts of interlinked instances, from where we can retrieve abundant knowledge. In order to access to the linked data, we have to be familiar with the ontology of each data set. However, because of the heterogeneous and big ontologies, it is time consuming to learn all the ontologies manually and it is difficult to observe which properties are important for describing instances of a specific class. In order to construct an ontology that can help users easily access to various data sets, we propose the Framework for InTegrating ONtologies (FITON) that can reduce the heterogeneity of the ontologies, retrieve core ontology schemas, and construct easily understandable integrated ontology. FITON solves three main problems: ontology heterogeneity problem, difficulty in identifying core ontology schemas, and missing domain or range information problem. The three main components of FITON solve each problem, which are graph-based ontology integration, machine-learning-based approach, and integrated ontology constructor. The graph-based ontology integration approach solves the ontology heterogeneity problem by analyzing the graph patterns of the interlinked instances and integrates heterogeneous ontologies by retrieving related classes and properties that are critical to link the same instances in different data sets. The machine-learning-based approach retrieves core ontology schemas (top-level classes and frequent core properties) by applying Decision Table and Apriori, that can help Semantic Web application developers easily understand the ontology schemas of the data sets. Furthermore, the integrated ontology constructor automatically adds missing domain, range, and annotations that can provide us rich information about the ontology. The integrated ontology constructed by FITON can help us discover missing links, detect misused properties, recommend standard ontology schemas for the instances, and improve the information retrieval with simple SPARQL queries. To my family and friends.

[1]  Jon Espen Ingvaldsen,et al.  Ontology Learning for Search Applications , 2007, OTM Conferences.

[2]  Christian Bizer,et al.  Media Meets Semantic Web - How the BBC Uses DBpedia and Linked Data to Make Connections , 2009, ESWC.

[3]  Sören Auer,et al.  LIMES - A Time-Efficient Approach for Large-Scale Link Discovery on the Web of Data , 2011, IJCAI.

[4]  Tom Heath,et al.  Linked Data: Evolving the Web into a Global Data Space , 2011, Linked Data.

[5]  George A. Miller,et al.  Using Corpus Statistics and WordNet Relations for Sense Identification , 1998, CL.

[6]  Ming Mao,et al.  An adaptive ontology mapping approach with neural network based constraint satisfaction , 2010, J. Web Semant..

[7]  Deborah L. McGuinness,et al.  owl:sameAs and Linked Data: An Empirical Study , 2010 .

[8]  Cosmin Stroe,et al.  AgreementMaker: Efficient Matching for Large Real-World Schemas and Ontologies , 2009, Proc. VLDB Endow..

[9]  Mariana Damova,et al.  Mapping the central LOD ontologies to PROTON upper-level ontology , 2010, OM.

[10]  Paul Buitelaar,et al.  Ontology Learning from Text: An Overview , 2005 .

[11]  Ryutaro Ichise,et al.  Detecting Hidden Relations in Geographic Data , 2010 .

[12]  Gerard Salton,et al.  Term-Weighting Approaches in Automatic Text Retrieval , 1988, Inf. Process. Manag..

[13]  Matthew A. Jaro,et al.  Advances in Record-Linkage Methodology as Applied to Matching the 1985 Census of Tampa, Florida , 1989 .

[14]  Timothy W. Finin,et al.  Swoogle: a search and metadata engine for the semantic web , 2004, CIKM '04.

[15]  Philip Resnik,et al.  Using Information Content to Evaluate Semantic Similarity in a Taxonomy , 1995, IJCAI.

[16]  Yi Li,et al.  RiMOM: A Dynamic Multistrategy Ontology Alignment Framework , 2009, IEEE Transactions on Knowledge and Data Engineering.

[17]  Deborah L. McGuinness,et al.  When owl: sameAs Isn't the Same: An Analysis of Identity in Linked Data , 2010, SEMWEB.

[18]  Craig A. Knoblock,et al.  Aligning Unions of Concepts in Ontologies of Geospatial Linked Data , 2011 .

[19]  Timothy W. Finin,et al.  A Machine Learning Approach to Linking FOAF Instances , 2010, AAAI Spring Symposium: Linked Data Meets Artificial Intelligence.

[20]  Jérôme Euzenat,et al.  Ontology Matching: State of the Art and Future Challenges , 2013, IEEE Transactions on Knowledge and Data Engineering.

[21]  Martin Gaedke,et al.  Discovering and Maintaining Links on the Web of Data , 2009, SEMWEB.

[22]  Zohra Bellahsene,et al.  Opening the Black Box of Ontology Matching , 2013, ESWC.

[23]  Jian Pei,et al.  Mining frequent patterns without candidate generation , 2000, SIGMOD '00.

[24]  Dan Brickley,et al.  FOAF Vocabulary Specification , 2004 .

[25]  Guilin Qi,et al.  Combination of Similarity Measures in Ontology Matching Using the OWA Operator , 2011, Recent Developments in the Ordered Weighted Averaging Operators.

[26]  William E. Winkler,et al.  The State of Record Linkage and Current Research Problems , 1999 .

[27]  Amit P. Sheth,et al.  Ontology Alignment for Linked Open Data , 2010, SEMWEB.

[28]  Dan Brickley,et al.  Rdf vocabulary description language 1.0 : Rdf schema , 2004 .

[29]  Christiane Fellbaum,et al.  Lexical Chains as Representations of Context for the Detection and Correction of Malapropisms , 1998 .

[30]  Christiane Fellbaum,et al.  Book Reviews: WordNet: An Electronic Lexical Database , 1999, CL.

[31]  Deborah L. McGuinness,et al.  SameAs Networks and Beyond: Analyzing Deployment Status and Implications of owl: sameAs in Linked Data , 2010, International Semantic Web Conference.

[32]  Robert Isele,et al.  Silk Server - Adding missing Links while consuming Linked Data , 2010, COLD.

[33]  Ted Pedersen,et al.  Extended Gloss Overlaps as a Measure of Semantic Relatedness , 2003, IJCAI.

[35]  Steffen Staab,et al.  International Handbooks on Information Systems , 2013 .

[36]  Jérôme David,et al.  Matching directories and OWL ontologies with AROMA , 2006, CIKM '06.

[37]  Cosmin Stroe,et al.  Using AgreementMaker to align ontologies for OAEI 2010 , 2010, OM.

[38]  Ron Kohavi,et al.  The Power of Decision Tables , 1995, ECML.

[39]  David Geer Reducing the Storage Burden via Data Deduplication , 2008, Computer.

[40]  Dekang Lin,et al.  An Information-Theoretic Definition of Similarity , 1998, ICML.

[41]  Michael B. Spring,et al.  A Harmony based Adaptive Ontology Mapping Approach , 2008, SWWS.

[42]  P. Jaccard THE DISTRIBUTION OF THE FLORA IN THE ALPINE ZONE.1 , 1912 .

[43]  Martha Palmer,et al.  Verb Semantics and Lexical Selection , 1994, ACL.

[44]  Graeme Hirst,et al.  Evaluating WordNet-based Measures of Lexical Semantic Relatedness , 2006, CL.

[45]  A. Tversky Features of Similarity , 1977 .

[46]  Ryutaro Ichise,et al.  Integrating Heterogeneous Ontology Schema from LOD , 2012 .

[47]  Stefan Decker,et al.  Sig.ma: Live views on the Web of Data , 2010, J. Web Semant..

[48]  Thorsten Joachims,et al.  Learning to classify text using support vector machines - methods, theory and algorithms , 2002, The Kluwer international series in engineering and computer science.

[49]  David W. Conrath,et al.  Semantic Similarity Based on Corpus Statistics and Lexical Taxonomy , 1997, ROCLING/IJCLCLP.

[50]  Ryutaro Ichise,et al.  Machine Learning Approach for Ontology Mapping Using Multiple Concept Similarity Measures , 2008, Seventh IEEE/ACIS International Conference on Computer and Information Science (icis 2008).

[51]  Nigel Shadbolt,et al.  Statistical Analysis of the owl: sameAs Network for Aligning Concepts in the Linking Open Data Cloud , 2012, DEXA.

[52]  Hyoil Han,et al.  A survey on ontology mapping , 2006, SGMD.

[53]  E. Prud hommeaux,et al.  SPARQL query language for RDF , 2011 .

[54]  Zohra Bellahsene,et al.  A Flexible System for Ontology Matching , 2011, CAiSE Forum.

[55]  Jeremy J. Carroll,et al.  Named graphs , 2005, J. Web Semant..

[56]  Michel Klein,et al.  Combining and relating ontologies: an analysis of problems and solutions , 2001, OIS@IJCAI.

[57]  Ryutaro Ichise,et al.  Graph-based ontology analysis in the linked open data , 2012, I-SEMANTICS '12.

[58]  Johanna Völker,et al.  Learning Disjointness for Debugging Mappings between Lightweight Ontologies , 2008, EKAW.

[59]  Hugh Glaser,et al.  Managing Co-reference on the Semantic Web , 2009, LDOW.

[60]  Felix Naumann,et al.  Synonym Analysis for Predicate Expansion , 2013, ESWC.

[61]  P. Jaccard,et al.  Etude comparative de la distribution florale dans une portion des Alpes et des Jura , 1901 .

[62]  Martin Gaedke,et al.  Silk - A Link Discovery Framework for the Web of Data , 2009, LDOW.

[63]  Jeremy J. Carroll,et al.  Resource description framework (rdf) concepts and abstract syntax , 2003 .

[64]  Ryutaro Ichise,et al.  Integrating Ontologies Using Ontology Learning Approach , 2013, IEICE Trans. Inf. Syst..

[65]  Jens Lehmann,et al.  Creating knowledge out of interlinked data , 2010, Semantic Web.

[66]  Lina Zhou,et al.  Ontology learning: state of the art and open issues , 2007, Inf. Technol. Manag..

[67]  Jungyun Seo,et al.  Classifying schematic and data heterogeneity in multidatabase systems , 1991, Computer.

[68]  Tim Berners-Lee,et al.  Linked data , 2020, Semantic Web for the Working Ontologist.

[69]  J. Euzenat,et al.  Ontology Matching , 2007, Springer Berlin Heidelberg.

[70]  Arie Segev,et al.  Data manipulation in heterogeneous databases , 1991, SGMD.

[71]  Ramakrishnan Srikant,et al.  Fast algorithms for mining association rules , 1998, VLDB 1998.

[72]  Ted Pedersen,et al.  WordNet::Similarity - Measuring the Relatedness of Concepts , 2004, NAACL.

[73]  Craig A. Knoblock,et al.  Discovering Concept Coverings in Ontologies of Linked Data Sources , 2012, International Semantic Web Conference.

[74]  Heiner Stuckenschmidt,et al.  Ontology-Based Integration of Information - A Survey of Existing Approaches , 2001, OIS@IJCAI.

[75]  Ryutaro Ichise,et al.  Instance-Based Ontological Knowledge Acquisition , 2013, ESWC.

[76]  Enrico Motta,et al.  Identifying Key Concepts in an Ontology, through the Integration of Cognitive Principles with Statistical and Topological Measures , 2008, ASWC.

[77]  Ryutaro Ichise,et al.  Mid-Ontology Learning from Linked Data , 2011, JIST.

[78]  Asunción Gómez-Pérez,et al.  Validating Ontologies with OOPS! , 2012, EKAW.

[79]  Fausto Giunchiglia,et al.  S-Match: an Algorithm and an Implementation of Semantic Matching , 2004, ESWS.

[80]  Orri Erling,et al.  RDF Support in the Virtuoso DBMS , 2007, CSSW.

[81]  Jaideep Srivastava,et al.  Entity Identification in Database Integration , 1996, Inf. Sci..

[82]  Stefanos D. Kollias,et al.  A String Metric for Ontology Alignment , 2005, SEMWEB.

[83]  M. Mach,et al.  Ontology key concepts interpretation , 2010, 2010 IEEE 8th International Symposium on Applied Machine Intelligence and Informatics (SAMI).

[84]  Amit P. Sheth,et al.  Contextual Ontology Alignment of LOD with an Upper Ontology: A Case Study with Proton , 2011, ESWC.

[85]  P. Shannon,et al.  Cytoscape: a software environment for integrated models of biomolecular interaction networks. , 2003, Genome research.

[86]  Jérôme Euzenat,et al.  Towards a principled approach to semantic interoperability , 2001, OIS@IJCAI.

[87]  Sören Auer,et al.  Creating knowledge out of interlinked data: making the web a data washing machine , 2011, WIMS '11.

[88]  Philipp Cimiano,et al.  Ontology learning and population from text - algorithms, evaluation and applications , 2006 .

[89]  Siddharth Patwardhan,et al.  Incorporating Dictionary and Corpus Information into a Context Vector Measure of Semantic Relatednes , 2003 .

[90]  Hinrich Schütze,et al.  Introduction to information retrieval , 2008 .

[91]  Ryutaro Ichise An Analysis of Multiple Similarity Measures for Ontology Mapping Problem , 2010, Int. J. Semantic Comput..

[92]  Ryutaro Ichise,et al.  Aggregation of similarity measures in ontology matching , 2010, OM.

[93]  W. Winkler Overview of Record Linkage and Current Research Directions , 2006 .

[94]  Craig A. Knoblock,et al.  Linking and Building Ontologies of Linked Data , 2010, SEMWEB.

[95]  Jens Lehmann,et al.  DBpedia: A Nucleus for a Web of Open Data , 2007, ISWC/ASWC.

[96]  Tim Berners-Lee,et al.  Linked Data - The Story So Far , 2009, Int. J. Semantic Web Inf. Syst..

[97]  Lucas Drumond,et al.  A Survey of Ontology Learning Procedures , 2008, WONTO.

[98]  Vladimir I. Levenshtein,et al.  Binary codes capable of correcting deletions, insertions, and reversals , 1965 .

[99]  Thomas R. Gruber,et al.  A translation approach to portable ontology specifications , 1993, Knowl. Acquis..