Crystal and molecular structure of isoleucinomycin, cyclo[‐(D‐Ile‐Lac‐Ile‐D‐Hyi)3‐](C60H102N6O18)

The crystal structure of a synthetic analog of valinomycin, cyclo[‐(D‐Ile‐Lac‐Ile‐D‐Hyi)3‐] (C60H102N6O18), has been determined by x‐ray diffraction procedures. The crystals are orthorhombic, space group P212121, with cell parameters a = 11.516, b = 15.705, c = 39.310 Å, and Z = 4. The atomic coordinates for the C, N, O atoms were refined in the anisotropic thermal motion approximation and for the H atoms in the isotropic approximation. Values of standard (R) and weighted (Rw) reliability factors after refinement are 0.073 and 0.056, respectively. The structure is completely asymmetric. The cyclic molecular backbone is stabilized by six intramolecular hydrogen bonds NH…︁OC, five bonds being of the 4→1 type and one being of the 5→1 type. The side chains are located on the molecular periphery. The conformational state of isoleucinomycin in the crystal is intermediate between the corresponding crystalline states of valinomycin and meso‐valinomycin. The observed conformation suggests that complexation could proceed via entry of the ion at the face possessing the L‐Lac residues, the less crowded face.

[1]  H A Scheraga,et al.  Energy parameters in polypeptides. V. An empirical hydrogen bond potential function based on molecular orbital calculations. , 1972, The Journal of physical chemistry.

[2]  E. M. Popov,et al.  Electronic structure and properties of the peptide group , 1971 .

[3]  C. Ramakrishnan,et al.  Study of hydrogen bonds in amino acids and peptides. , 2009, International journal of protein research.

[4]  J. W. Edmonds,et al.  The crystal and molecular structure of the triclinic and monoclinic forms of valinomycin, C54H90N6O18. , 1975, Journal of the American Chemical Society.

[5]  L. Steinrauf,et al.  The molecular structure and some transport properties of valinomycin. , 1969, Biochemical and biophysical research communications.

[6]  Johnson F. Yan,et al.  Conformational analysis of macromolecules. VI. Helical structures of o-,m-, and p-chlorobenzyl esters of poly-L-aspartic acid , 1970 .

[7]  Harold A. Scheraga,et al.  Energy Parameters in Polypeptides. I. Charge Distributions and the Hydrogen Bond , 1967 .

[8]  G. N. Ramachandran,et al.  Theory of the non-planar peptide unit. , 1973, Biochimica et biophysica acta.

[9]  I. Karle Conformation of valinomycin in a triclinic crystal form. , 1975, Journal of the American Chemical Society.

[10]  V. T. Ivanov,et al.  Membrane-active complexones , 1974 .

[11]  V. T. Ivanov,et al.  Refinement of the solution conformation of valinomycin with the acid coupling constants from the 13C-nuclear-magnetic-resonance spectra. , 1977, European journal of biochemistry.

[12]  G. N. Ramachandran,et al.  The non-planar peptide unit. II. Comparison of theory with crystal structure data. , 1973, Biochimica et biophysica acta.

[13]  V. T. Ivanov,et al.  The crystal and molecular structure of cyclo‐[‐(D‐Val‐Hyi‐Val‐D‐Hyi)3‐] (meso‐valinomycin, C60H102N6O18) , 1979 .

[14]  V. T. Ivanov,et al.  The physicochemical basis of the functioning of biological membranes: the conformation of valinomycin and its K+ complex in solution. , 1969, Biochemical and biophysical research communications.

[15]  H. Scheraga,et al.  Energy parameters in polypeptides. IV. Semiempirical molecular orbital calculations of conformational dependence of energy and partial charge in di- and tripeptides. , 1971, The Journal of physical chemistry.

[16]  M. Dobler,et al.  The crystal structure of a K+ complex of valinomycin. , 1975, Helvetica chimica acta.