Quadratic models of AC–DC power flow and optimal reactive power flow with HVDC and UPFC controls

[1]  Lawrence Jenkins,et al.  Optimum allocation of reactive power for voltage stability improvement in AC-DC power systems , 2006 .

[2]  N.R. Watson,et al.  A graphical interface for interactive AC/DC system harmonic analysis , 1998, 8th International Conference on Harmonics and Quality of Power. Proceedings (Cat. No.98EX227).

[3]  S. Tso,et al.  An Extended Nonlinear Primal-Dual Interior-Point Algorithm for Reactive-Power Optimization of Large-Scale Power Systems with Discrete Control Variables , 2002, IEEE Power Engineering Review.

[4]  S. Iwamoto,et al.  A Fast Load Flow Method Retaining Nonlinearity , 1978, IEEE Transactions on Power Apparatus and Systems.

[5]  Hadi Saadat,et al.  Power System Analysis , 1998 .

[6]  Yonghua Song,et al.  Modern Power Systems Analysis , 2008 .

[7]  C. N. Lu,et al.  The incorporation of HVDC equations in optimal power flow methods using sequential quadratic programming techniques , 1988 .

[8]  J. Miller,et al.  The Institution of Electrical Engineers , 2006, Nature.

[9]  Wei Yan,et al.  A new optimal reactive power flow model in rectangular form and its solution by predictor corrector primal dual interior point method , 2006, IEEE Transactions on Power Systems.

[10]  G. Opoku,et al.  Coordination of Reactive Power Sources to Correct Bus Voltage Violations in an AC-DC System , 1984, IEEE Power Engineering Review.

[11]  Bruce C. Smith,et al.  AC-DC Power System Analysis , 1998 .

[12]  A. Kalam,et al.  A new version of exact decoupled second order AC-DC load flow in rectangular coordinates , 1993 .

[13]  Xiao-Ping Zhang,et al.  Flexible AC Transmission Systems: Modelling and Control , 2006 .

[14]  Avinash Kumar Sinha,et al.  A decoupled second order state estimator for AC-DC power systems , 1994 .