Quantifying Parameter Sensitivity, Interaction and Transferability in Hydrologically Enhanced Versions of Noah-LSM over Transition Zones

We use sensitivity analysis to identify the parameters that are most responsible for shaping land surface model (LSM) simulations and to understand the complex interactions in three versions of the Noah LSM: the standard version (STD), a version enhanced with a simple groundwater module (GW), and version augmented by a dynamic phenology module (DV). We use warm season, high-frequency, near-surface states and turbulent fluxes collected over nine sites in the US Southern Great Plains. We quantify changes in the pattern of sensitive parameters, the amount and nature of the interaction between parameters, and the covariance structure of the distribution of behavioral parameter sets. Using Sobol s total and first-order sensitivity indexes, we show that very few parameters directly control the variance of the model output. Significant parameter interaction occurs so that not only the optimal parameter values differ between models, but the relationships between parameters change. GW decreases parameter interaction and appears to improve model realism, especially at wetter sites. DV increases parameter interaction and decreases identifiability, implying it is overparameterized and/or underconstrained. A case study at a wet site shows GW has two functional modes: one that mimics STD and a second in which GW improves model function by decoupling direct evaporation and baseflow. Unsupervised classification of the posterior distributions of behavioral parameter sets cannot group similar sites based solely on soil or vegetation type, helping to explain why transferability between sites and models is not straightforward. This evidence suggests a priori assignment of parameters should also consider climatic differences.

[1]  P. Reed,et al.  Hydrology and Earth System Sciences Discussions Comparing Sensitivity Analysis Methods to Advance Lumped Watershed Model Identification and Evaluation , 2022 .

[2]  Mac McKee,et al.  Effect of missing data on performance of learning algorithms for hydrologic predictions: Implications to an imputation technique , 2007 .

[3]  Soroosh Sorooshian,et al.  Sensitivity analysis of a land surface scheme using multicriteria methods , 1999 .

[4]  Soroosh Sorooshian,et al.  Parameter sensitivity analysis for different complexity land surface models using multicriteria methods , 2006 .

[5]  S. Sorooshian,et al.  Effective and efficient algorithm for multiobjective optimization of hydrologic models , 2003 .

[6]  Kevin W. Manning,et al.  Sensitivity of the PBL and Precipitation in 12-Day Simulations of Warm-Season Convection Using Different Land Surface Models and Soil Wetness Conditions , 2008 .

[7]  Thorsten Joachims,et al.  Making large scale SVM learning practical , 1998 .

[8]  Kevin W. Manning,et al.  The community Noah land surface model with multiparameterization options (Noah-MP): 2. Evaluation over global river basins , 2011 .

[9]  Xu Liang,et al.  Intercomparison of land-surface parameterization schemes: sensitivity of surface energy and water fluxes to model parameters , 2003 .

[10]  Keith Beven,et al.  Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology , 2001 .

[11]  Bernhard Schölkopf,et al.  A tutorial on support vector regression , 2004, Stat. Comput..

[12]  Hoshin Vijai Gupta,et al.  Model identification for hydrological forecasting under uncertainty , 2005 .

[13]  R. Spear Eutrophication in peel inlet—II. Identification of critical uncertainties via generalized sensitivity analysis , 1980 .

[14]  Soroosh Sorooshian,et al.  Sensitivity analysis of the biosphere‐atmosphere transfer scheme , 1996 .

[15]  A. Saltelli,et al.  Making best use of model evaluations to compute sensitivity indices , 2002 .

[16]  Andrew J. Pitman,et al.  Assessing the Sensitivity of a Land-Surface Scheme to the Parameter Values Using a Single Column Model , 1994 .

[17]  J. D. Tarpley,et al.  The multi‐institution North American Land Data Assimilation System (NLDAS): Utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system , 2004 .

[18]  P. Reed,et al.  Characterization of watershed model behavior across a hydroclimatic gradient , 2008 .

[19]  Joseph A. C. Delaney Sensitivity analysis , 2018, The African Continental Free Trade Area: Economic and Distributional Effects.

[20]  Aaron A. Berg,et al.  Evaluation of 10 Methods for Initializing a Land Surface Model , 2005 .

[21]  Patrick M. Reed,et al.  Advancing the identification and evaluation of distributed rainfall‐runoff models using global sensitivity analysis , 2007 .

[22]  H. Gupta,et al.  Understanding uncertainty in distributed flash flood forecasting for semiarid regions , 2008 .

[23]  D. Lawrence,et al.  Regions of Strong Coupling Between Soil Moisture and Precipitation , 2004, Science.

[24]  Stefano Tarantola,et al.  Sensitivity analysis practices: Strategies for model-based inference , 2006, Reliab. Eng. Syst. Saf..

[25]  Zong-Liang Yang,et al.  Evaluating Enhanced Hydrological Representations in Noah LSM over Transition Zones: Implications for Model Development , 2009 .

[26]  Thorsten Wagener,et al.  Numerical and visual evaluation of hydrological and environmental models using the Monte Carlo analysis toolbox , 2007, Environ. Model. Softw..

[27]  P. Reed,et al.  Sensitivity-guided reduction of parametric dimensionality for multi-objective calibration of watershed models , 2009 .

[28]  Mac McKee,et al.  Support vectors–based groundwater head observation networks design , 2004 .

[29]  Steven E. Koch,et al.  An Overview of the International H2O Project (IHOP_2002) and Some Preliminary Highlights , 2004 .

[30]  Soroosh Sorooshian,et al.  A framework for development and application of hydrological models , 2001, Hydrology and Earth System Sciences.

[31]  J. Dudhia,et al.  Coupling an Advanced Land Surface–Hydrology Model with the Penn State–NCAR MM5 Modeling System. Part I: Model Implementation and Sensitivity , 2001 .

[32]  Lisa J. Graumlich,et al.  Interactive Canopies for a Climate Model , 1998 .

[33]  Bart Nijssen,et al.  Monte Carlo sensitivity analysis of land surface parameters using the Variable Infiltration Capacity model , 2007 .

[34]  I. Sobol Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates , 2001 .

[35]  Paul R. Houser,et al.  Surface flux measurement and modeling at a semi-arid Sonoran Desert site , 1996 .

[36]  P. Blanken,et al.  NCAR/CU Surface, Soil, and Vegetation Observations during the International H2O Project 2002 Field Campaign , 2007 .

[37]  Upmanu Lall,et al.  Support vector machines for nonlinear state space reconstruction: Application to the Great Salt Lake time series , 2005 .

[38]  Mariana Vertenstein,et al.  An urban parameterization for a global climate model. Part II: Sensitivity to input parameters and the simulated urban heat island in offline simulations , 2008 .

[39]  Corinne Le Quéré,et al.  Climate Change 2013: The Physical Science Basis , 2013 .

[40]  Saltelli Andrea,et al.  Global Sensitivity Analysis: The Primer , 2008 .

[41]  Luis A. Bastidas,et al.  Multiobjective analysis of chaotic dynamic systems with sparse learning machines , 2006 .

[42]  Anthony J. Jakeman,et al.  Ten iterative steps in development and evaluation of environmental models , 2006, Environ. Model. Softw..

[43]  K. Davis,et al.  Sensitivity, uncertainty and time dependence of parameters in a complex land surface model , 2008 .

[44]  J. D. Tarpley,et al.  Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model , 2003 .

[45]  Peter C. Young,et al.  Uncertainty , sensitivity analysis and the role of data based mechanistic modeling in hydrology , 2006 .

[46]  Yuqiong Liu,et al.  Reconciling theory with observations: elements of a diagnostic approach to model evaluation , 2008 .

[47]  Nong Shang,et al.  Parameter uncertainty and interaction in complex environmental models , 1994 .

[48]  W. J. Shuttleworth,et al.  Parameter estimation of a land surface scheme using multicriteria methods , 1999 .

[49]  A. Saltelli,et al.  Sensitivity analysis: Could better methods be used? , 1999 .