Galactic Center IRS 13E: Colliding Stellar Winds or an Intermediate-mass Black Hole?

A small cluster of massive stars residing in the Galactic center, collectively known as IRS 13E, is of special interest due to its close proximity to the central supermassive black hole Sgr A* and the possibility that an embedded intermediate-mass black hole (IMBH) binds its member stars. It has been suggested that colliding winds from two member stars, both classified as Wolf–Rayet type, are responsible for the observed X-ray, infrared, and radio emission from IRS 13E. We have conducted an in-depth study of the X-ray spatial, temporal, and spectral properties of IRS 13E, based on 5.6 Ms of ultradeep Chandra observations obtained over 20 years. These X-ray observations show no significant evidence for source variability. We have also explored the kinematics of the cluster members, using Keck near-infrared imaging and spectroscopic data on a 14 yr baseline that considerably improve the accuracy of the stars’ proper motions. The observations are interpreted using three-dimensional hydrodynamical simulations of colliding winds tailored to match the physical conditions of IRS 13E, leading us to conclude that the observed X-ray spectrum and morphology can be well explained by the colliding wind scenario, in the meantime offering no support for the presence of a putative IMBH. An IMBH more massive than a few 103 M⊙ is also strongly disfavored by the stellar kinematics.

[1]  A. Ghez,et al.  A population of dust-enshrouded objects orbiting the Galactic black hole , 2020, Nature.

[2]  A. Burkert,et al.  Three-dimensional simulations of clump formation in stellar wind collisions , 2019, Monthly Notices of the Royal Astronomical Society.

[3]  Q. Wang,et al.  Colliding winds in and around the stellar group IRS 13E at the galactic centre , 2019, 1912.12344.

[4]  E. Becklin,et al.  Unprecedented Near-infrared Brightness and Variability of Sgr A* , 2019, The Astrophysical Journal.

[5]  A. Miyazaki,et al.  Rotating ionized gas ring around the Galactic center IRS13E3 , 2019, Publications of the Astronomical Society of Japan.

[6]  Jessica R. Lu,et al.  Relativistic redshift of the star S0-2 orbiting the Galactic Center supermassive black hole , 2019, Science.

[7]  S. Rabien,et al.  A geometric distance measurement to the Galactic center black hole with 0.3% uncertainty , 2019, Astronomy & Astrophysics.

[8]  Jessica R. Lu,et al.  An Adaptive Optics Survey of Stellar Variability at the Galactic Center , 2018, The Astrophysical Journal.

[9]  M. Morris,et al.  A Deep Chandra View of a Candidate Parsec-scale Jet from the Galactic Center Supermassive Black Hole , 2018, The Astrophysical Journal.

[10]  L. Oskinova,et al.  The X-ray catalog of spectroscopically identified Galactic O stars , 2018, Astronomy & Astrophysics.

[11]  E. Quataert,et al.  Hydrodynamic simulations of the inner accretion flow of Sagittarius A* fuelled by stellar winds , 2018, 1805.00474.

[12]  M. Morris,et al.  An Ultradeep Chandra Catalog of X-Ray Point Sources in the Galactic Center Star Cluster , 2018, 1802.05073.

[13]  A. Miyazaki,et al.  The Second Galactic Center Black Hole? A Possible Detection of Ionized Gas Orbiting around an IMBH Embedded in the Galactic Center IRS13E Complex , 2017, 1711.00612.

[14]  N. Grosso,et al.  Sixteen years of X-ray monitoring of Sagittarius A*: Evidence for a decay of the faint flaring rate from 2013 August, 13 months before a rise in the bright flaring rate , 2017, 1704.08102.

[15]  Christopher M. P. Russell,et al.  Modelling the thermal X-ray emission around the Galactic centre from colliding Wolf-Rayet winds , 2016, Proceedings of the International Astronomical Union.

[16]  Y. Nazé,et al.  X-ray emission from interacting wind massive binaries: A review of 15 years of progress , 2015, 1509.06480.

[17]  Clump formation through colliding stellar winds in the Galactic Centre , 2016, Proceedings of the International Astronomical Union.

[18]  W. Cotton,et al.  COMPACT RADIO SOURCES WITHIN 30″ OF SGR A*: PROPER MOTIONS, STELLAR WINDS, AND THE ACCRETION RATE ONTO SGR A* , 2015, 1506.07182.

[19]  P. Wizinowich,et al.  DETECTION OF GALACTIC CENTER SOURCE G2 AT 3.8 μm DURING PERIAPSE PASSAGE , 2014, 1410.1884.

[20]  W. Cotton,et al.  THE DISCOVERY OF RADIO STARS WITHIN 10″ OF Sgr A*  AT 7 mm , 2014, 1407.4135.

[21]  Jessica R. Lu,et al.  PROPERTIES OF THE REMNANT CLOCKWISE DISK OF YOUNG STARS IN THE GALACTIC CENTER , 2014, 1401.7354.

[22]  R. Narayan,et al.  Hot Accretion Flows Around Black Holes , 2014, 1401.0586.

[23]  J. Cuadra,et al.  Dissecting X-ray–Emitting Gas Around the Center of Our Galaxy , 2013, Science.

[24]  N. Gehrels,et al.  SWIFT DISCOVERY OF A NEW SOFT GAMMA REPEATER, SGR J1745−29, NEAR SAGITTARIUS A* , 2013, 1305.2128.

[25]  Jessica R. Lu,et al.  STELLAR POPULATIONS IN THE CENTRAL 0.5 pc OF THE GALAXY. I. A NEW METHOD FOR CONSTRUCTING LUMINOSITY FUNCTIONS AND SURFACE-DENSITY PROFILES , 2013, 1301.0539.

[26]  K. Mužić,et al.  Near-infrared proper motions and spectroscopy of infrared excess sources at the Galactic center , 2012, 1208.1907.

[27]  J. Chiang,et al.  STUDIES IN ASTRONOMICAL TIME SERIES ANALYSIS. VI. BAYESIAN BLOCK REPRESENTATIONS , 2012, 1207.5578.

[28]  F. Yuan,et al.  Radiative efficiency of hot accretion flows , 2012, 1207.3113.

[29]  R. Genzel,et al.  PHYSICS OF THE GALACTIC CENTER CLOUD G2, ON ITS WAY TOWARD THE SUPERMASSIVE BLACK HOLE , 2012, 1201.1414.

[30]  C. Gammie,et al.  A gas cloud on its way towards the supermassive black hole at the Galactic Centre , 2011, Nature.

[31]  A. Sternberg,et al.  THE STAR FORMATION HISTORY OF THE MILKY WAY'S NUCLEAR STAR CLUSTER , 2011, 1110.1633.

[32]  P. Colella,et al.  THE PLUTO CODE FOR ADAPTIVE MESH COMPUTATIONS IN ASTROPHYSICAL FLUID DYNAMICS , 2011, 1110.0740.

[33]  John P. Hughes,et al.  IONIZATION EQUILIBRIUM TIMESCALES IN COLLISIONAL PLASMAS , 2010, 1006.0254.

[34]  D. Gratadour,et al.  GC-IRS13E—A PUZZLING ASSOCIATION OF THREE EARLY-TYPE STARS , 2010, 1003.1717.

[35]  J. Pittard,et al.  3D models of radiatively driven colliding winds in massive O + O star binaries – III. Thermal X‐ray emission , 2009, 0909.4383.

[36]  T. Paumard,et al.  AN EXTREMELY TOP-HEAVY INITIAL MASS FUNCTION IN THE GALACTIC CENTER STELLAR DISKS , 2009, 0908.2177.

[37]  J. Pittard 3D models of radiatively driven colliding winds in massive O + O star binaries - II. Thermal radio to submillimetre emission , 2009, 0908.1003.

[38]  W. Goss,et al.  DYNAMICS OF IONIZED GAS AT THE GALACTIC CENTER: VERY LARGE ARRAY OBSERVATIONS OF THE THREE-DIMENSIONAL VELOCITY FIELD AND LOCATION OF THE IONIZED STREAMS IN SAGITTARIUS A WEST , 2009, 0904.3133.

[39]  S. Trippe,et al.  EVIDENCE FOR WARPED DISKS OF YOUNG STARS IN THE GALACTIC CENTER , 2008, 0811.3903.

[40]  Jessica R. Lu,et al.  A DISK OF YOUNG STARS AT THE GALACTIC CENTER AS DETERMINED BY INDIVIDUAL STELLAR ORBITS , 2008, 0808.3818.

[41]  R. Abuter,et al.  Evidence for a Long-standing Top-heavy Initial Mass Function in the Central Parsec of the Galaxy , 2007, 0707.2382.

[42]  Sergei Nayakshin,et al.  Variable accretion and emission from the stellar winds in the Galactic Centre , 2007, 0705.0769.

[43]  A. Ferrari,et al.  PLUTO: A Numerical Code for Computational Astrophysics , 2007, astro-ph/0701854.

[44]  T. Paumard,et al.  Stellar and wind properties of massive stars in the central parsec of the Galaxy , 2006, Proceedings of the International Astronomical Union.

[45]  James Lyke,et al.  OSIRIS: a diffraction limited integral field spectrograph for Keck , 2006, SPIE Astronomical Telescopes + Instrumentation.

[46]  T. Paumard,et al.  The Two Young Star Disks in the Central Parsec of the Galaxy: Properties, Dynamics, and Formation , 2006, astro-ph/0601268.

[47]  E. Gotthelf,et al.  G359.95-0.04: an energetic pulsar candidate near Sgr A* , 2005, astro-ph/0512643.

[48]  T. D. Matteo,et al.  Galactic Centre stellar winds and Sgr A* accretion , 2005, astro-ph/0505382.

[49]  A. Eckart,et al.  A Black Hole in the Galactic Center Complex IRS 13E? , 2005, astro-ph/0504474.

[50]  M. Langlois,et al.  Society of Photo-Optical Instrumentation Engineers , 2005 .

[51]  Q. Wang,et al.  Correction for the Flux Measurement Bias in X-Ray Source Detection , 2004, astro-ph/0405272.

[52]  F. Rigaut,et al.  The nature of the Galactic Center source IRS 13 revealed by high spatial resolution in the infrared , 2004, astro-ph/0404450.

[53]  D. Rouan,et al.  The Stellar Cusp around the Supermassive Black Hole in the Galactic Center , 2003, astro-ph/0305423.

[54]  R. Coker,et al.  Astronomy & Astrophysics manuscript no. h3240 The Galactic Centre Source IRS 13E: a Post-LBV Wolf-Rayet Colliding Wind Binary? , 2001 .

[55]  UCLA,et al.  Chandra X-Ray Spectroscopic Imaging of Sagittarius A* and the Central Parsec of the Galaxy , 2001, astro-ph/0102151.

[56]  R. McCray,et al.  Astrophysical Journal, in press Preprint typeset using L ATEX style emulateapj v. 26/01/00 ON THE ABSORPTION OF X-RAYS IN THE INTERSTELLAR MEDIUM , 2000 .

[57]  K. Nandra,et al.  ASCA Observations of Seyfert 1 Galaxies. I. Data Analysis, Imaging, and Timing , 1996, astro-ph/9608170.

[58]  R. Coker,et al.  A Hydrodynamic Model for the Formation of the Galactic Center “Minicavity” , 1996 .

[59]  T. Loredo,et al.  A new method for the detection of a periodic signal of unknown shape and period , 1992 .

[60]  V. Usov Stellar wind collision and X-ray generation in massive binaries , 1992 .

[61]  A. Pollock,et al.  Colliding Winds from Early-Type Stars in Binary Systems , 1992 .

[62]  V. Usov Stellar wind collision and dust formation in long-period, heavily interacting Wolf-Rayet binaries. , 1991 .

[63]  C. Sarazin A maximum likelihood method for determining the distribution of galaxies in clusters , 1980 .